78 research outputs found

    "Ich tu\u27s" (I\u27ll do it) - the climate protection initiative in Styria. Sensitization, climate check and continuing education for Styrian adult education

    Get PDF
    "Ich tu\u27s - für unsere Zukunft" ist eine vom Land Steiermark beauftragte, seit 2012 bestehende Klimainitiative quer über alle Bildungsbereiche. 2016 wurde sie explizit für den Bereich der Erwachsenenbildung erweitert. Den Auftakt machten die Projektnehmerinnen mit einer Erhebung, die eine sehr geringe Sichtbarkeit des Themas Klimaschutz sowohl in den steirischen Weiterbildungsangeboten als auch bei den Einrichtungen selbst deutlich machte. Das Ergebnis zeigte die Notwendigkeit von Sensibilisierung und Bewusstseinsbildung von Erwachsenenbildner*innen bzw. Einrichtungen der Erwachsenenbildung auf und führte zu folgendem Angebot für steirische Einrichtungen: einem systematischen Klimacheck für Einrichtungen und Trainer*innen inklusive einer Klimaschutz-Fachberatung und Prozessbegleitung bei der Organisationsentwicklung, Informations- und Lehrmaterialien wie Lehrvideos oder einer Toolbox sowie zur Etablierung und Betreuung eines Netzwerks der Ich tu\u27s-Bildungspartner*innen. Die Erfahrungen aus der Initiative zeigen: Klimaschutz ist ein Thema der Organisationsentwicklung und bedarf des Dranbleibens, das etwa durch jährliche Audits und durch gute Vernetzung gelingen kann. Den Abschluss des Beitrags bilden Kurzvorstellungen von vier an Ich tu\u27s beteiligten Einrichtungen der Erwachsenenbildung. (DIPF/Orig.)"Ich tu\u27s - für unsere Zukunft" (I\u27ll do it - for our future) is a climate initiative cutting across all fields of education that was commissioned by the federal state of Styria in 2012. It was explicitly expanded to include the field of adult education in 2016. The project team kicked it off with a survey that made clear the very low visibility of the topic of climate protection in continuing education offerings in Styria as well as in adult education institutions. The findings showed how it is necessary to sensitize and raise the awareness of adult educators and adult education institutions and led to the following offering for Styrian institutions: a systematic climate check for institutions and trainers including climate protection consulting and support in organizational development, informational and teaching materials such as instructional videos or a tool kit and the establishment, maintenance and management of a network of the initiative\u27s educational partners. The experiences of this initiative show that climate protection is an issue in organizational development requiring perseverance as well as annual audits and good networking. The article finishes with a brief presentation of four of the adult education institutions that participate in the initiative. (DIPF/Orig.

    Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met

    Get PDF
    Abstract Introduction Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown clinical efficacy in lung, colon, and pancreatic cancers. In lung cancer, resistance to EGFR TKIs correlates with amplification of the hepatocyte growth factor (HGF) receptor tyrosine kinase Met. Breast cancers do not respond to EGFR TKIs, even though EGFR is overexpressed. This intrinsic resistance to EGFR TKIs in breast cancer does not correlate with Met amplification. In several tissue monoculture models of human breast cancer, Met, although expressed, is not phosphorylated, suggesting a requirement for a paracrine-produced ligand. In fact, HGF, the ligand for Met, is not expressed in epithelial cells but is secreted by fibroblasts in the tumor stroma. We have identified a number of breast cancer cell lines that are sensitive to EGFR TKIs. This sensitivity is in conflict with the observed clinical resistance to EGFR TKIs in breast cancers. Here we demonstrate that fibroblast secretion of HGF activates Met and leads to EGFR/Met crosstalk and resistance to EGFR TKIs in triple-negative breast cancer (TNBC). Methods The SUM102 and SUM149 TNBC cell lines were used in this study. Recombinant HGF as well as conditioned media from fibroblasts expressing HGF were used as sources for Met activation. Furthermore, we co-cultured HGF-secreting fibroblasts with Met-expressing cancer cells to mimic the paracrine HGF/Met pathway, which is active in the tumor microenvironment. Cell growth, survival, and transformation were measured by cell counting, clonogenic and MTS assays, and soft agar colony formation, respectively. Student\u27s t test was used for all statistical analysis. Results Here we demonstrate that treatment of breast cancer cells sensitive to EGFR TKIs with recombinant HGF confers a resistance to EGFR TKIs. Interestingly, knocking down EGFR abrogated HGF-mediated cell survival, suggesting a crosstalk between EGFR and Met. HGF is secreted as a single-chain pro-form, which has to be proteolytically cleaved in order to activate Met. To determine whether the proteases required to activate pro-HGF were present in the breast cancer cells, we utilized a fibroblast cell line expressing pro-HGF (RMF-HGF). Addition of pro-HGF-secreting conditioned fibroblast media to TNBC cells as well as co-culturing of TNBC cells with RMF-HGF fibroblasts resulted in robust phosphorylation of Met and stimulated proliferation in the presence of an EGFR TKI. Conclusions Taken together, these data suggest a role for Met in clinical resistance to EGFR TKIs in breast cancer through EGFR/Met crosstalk mediated by tumor-stromal interactions

    Matriptase regulates c-Met mediated proliferation and invasion in inflammatory breast cancer.

    Get PDF
    The poor prognosis for patients with inflammatory breast cancer (IBC) compared to patients with other types of breast cancers emphasizes the need to better understand the molecular underpinnings of this disease with the goal of developing effective targeted therapeutics. Dysregulation of matriptase expression, an epithelial-specific member of the type II transmembrane serine protease family, has been demonstrated in many different cancer types. To date, no studies have assessed the expression and potential pro-oncogenic role of matriptase in IBC. We examined the functional relationship between matriptase and the HGF/c-MET signaling pathway in the IBC cell lines SUM149 and SUM190, and in IBC patient samples. Matriptase and c-Met proteins are localized on the surface membrane of IBC cells and their expression is strongly correlated in infiltrating cancer cells and in the cancer cells of lymphatic emboli in patient samples. Abrogation of matriptase expression by silencing with RNAi or inhibition of matriptase proteolytic activity with a synthetic inhibitor impairs the conversion of inactive pro-HGF to active HGF and subsequent c-Met-mediated signaling, leading to efficient impairment of proliferation and invasion of IBC cells. These data show the potential of matriptase inhibitors as a novel targeted therapy for IBC, and lay the groundwork for the development and testing of such drugs

    Polyfunctional donor-reactive T cells are associated with acute T-cell-mediated rejection of the kidney transplant

    Get PDF
    Acute T-cell-mediated rejection (aTCMR) still remains a clinical problem after kidney transplantation despite significant improvements in immunosuppressive regimens. Polyfunctional T cells, i.e. T cells producing multiple pro-inflammatory cytokines, are believed to be the most relevant T cells in an immune response. The aim of this study was to determine whether polyfunctional donor-reactive T cells are associated with aTCMR. In a case-control study, 49 kidney transplant recipients with a biopsy-proven aTCMR in the first year after transplantation were included, as well as 51 controls without aTCMR. Circulating donor-reactive T cells were identified by the expression of CD137 after short-term co-culture with donor antigen-presenting cells. Polyfunctional donor-reactive T cells were further characterized by dissection into different T-cell subsets encompassing the spectrum of naïve to terminally differentiated effector T cells. Prior to kidney transplantation, proportions of donor-reactive CD4+ (0.03% versus 0.02%; P &lt; 0.01) and CD8+ (0.18% versus 0.10%; P &lt; 0.01) CD137++ T cells were significantly higher in recipients with a biopsy-proven aTCMR versus non-rejectors. Polyfunctionality was higher (P = 0.03) in this subset of CD137-expressing T cells. These cells were predominantly of the EM/EMRA-phenotype, with polyfunctional donor-reactive CD137++CD4+ T cells predominantly co-expressing CD28 whereas approximately half of the polyfunctional CD137++CD8+ T cells co-expressed CD28. In addition, at the time of aTCMR, polyfunctional donor-reactive CD137++ CD4+, but not CD8+, T cells, were specifically decreased by 75% compared to before transplantation in recipients with as well as those without an aTCMR. Prior to transplantation, the proportion of polyfunctional donor-reactive CD137++ T cells is associated with the occurrence of a biopsy-proven aTCMR within the first year after transplantation.</p

    Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1

    Get PDF
    Profilaggrin is a large epidermal polyprotein that is proteolytically processed during keratinocyte differentiation to release multiple filaggrin monomer units as well as a calcium-binding regulatory NH2-terminal filaggrin S-100 protein. We show that epidermal deficiency of the transmembrane serine protease Matriptase/MT-SP1 perturbs lipid matrix formation, cornified envelope morphogenesis, and stratum corneum desquamation. Surprisingly, proteomic analysis of Matriptase/MT-SP1–deficient epidermis revealed the selective loss of both proteolytically processed filaggrin monomer units and the NH2-terminal filaggrin S-100 regulatory protein. This was associated with a profound accumulation of profilaggrin and aberrant profilaggrin-processing products in the stratum corneum. The data identify keratinocyte Matriptase/MT-SP1 as an essential component of the profilaggrin-processing pathway and a key regulator of terminal epidermal differentiation

    Impact of iron reduction on the metabolism of Clostridium acetobutylicum

    Get PDF
    Iron is essential for most living organisms. In addition, its biogeochemical cycling influences important processes in the geosphere (e.g., the mobilization or immobilization of trace elements and contaminants). The reduction of Fe(III) to Fe(II) can be catalysed microbially, particularly by metal-respiring bacteria utilizing Fe(III) as a terminal electron acceptor. Furthermore, Grampositive fermentative iron reducers are known to reduce Fe(III) by using it as a sink for excess reducing equivalents, as a form of enhanced fermentation. Here, we use the Gram-positive fermentative bacterium Clostridium acetobutylicum as a model system due to its ability to reduce heavy metals.We investigated the reduction of soluble and solid iron during fermentation. We found that exogenous (resazurin, resorufin, anthraquinone-2,- 6-disulfonate) aswell as endogenous (riboflavin) electron mediators enhance solid iron reduction. In addition, iron reduction buffers the pH, and elicits a shift in the carbon and electron flow to less reduced products relative to fermentation. This study underscores the role fermentative bacteria can play in iron cycling and provides insights into the metabolic profile of coupled fermentation and iron reduction with laboratory experiments and metabolic network modellin

    uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    Get PDF
    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor–associated protein (uPARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions

    Runs of homozygosity in killer whale genomes provide a global record of demographic histories

    Get PDF
    Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (\u3c1 \u3eMb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (\u3e1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH \u3e1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression

    Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation

    Get PDF
    Recent gene ablation studies in mice have shown that matriptase, a type II transmembrane serine protease, and prostasin, a glycosylphosphatidylinositol-anchored membrane serine protease, are both required for processing of the epidermis-specific polyprotein, profilaggrin, stratum corneum formation, and acquisition of epidermal barrier function. Here we present evidence that matriptase acts upstream of prostasin in a zymogen activation cascade that regulates terminal epidermal differentiation and is required for prostasin zymogen activation. Enzymatic gene trapping of matriptase combined with prostasin immunohistochemistry revealed that matriptase was co-localized with prostasin in transitional layer cells of the epidermis and that the developmental onset of expression of the two membrane proteases was coordinated and correlated with acquisition of epidermal barrier function. Purified soluble matriptase efficiently converted soluble prostasin zymogen to an active two-chain form that formed SDS-stable complexes with the serpin protease nexin-1. Whereas two forms of prostasin with molecular weights corresponding to the prostasin zymogen and active prostasin were present in wild type epidermis, prostasin was exclusively found in the zymogen form in matriptase-deficient epidermis. These data suggest that matriptase, an autoactivating protease, acts upstream from prostasin to initiate a zymogen cascade that is essential for epidermal differentiation
    corecore