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Prostasin Proteolytic Cascade
Regulating Terminal Epidermal
Differentiation*
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Recent gene ablation studies in mice have shown that
matriptase, a type II transmembrane serine protease, and pros-
tasin, a glycosylphosphatidylinositol-anchored membrane ser-
ine protease, are both required for processing of the epidermis-
specific polyprotein, profilaggrin, stratum corneum formation,
and acquisition of epidermal barrier function. Here we present
evidence that matriptase acts upstream of prostasin in a zymo-
gen activation cascade that regulates terminal epidermal differ-
entiation and is required for prostasin zymogen activation.
Enzymatic gene trapping ofmatriptase combinedwith prostasin
immunohistochemistry revealed that matriptase was co-local-
ized with prostasin in transitional layer cells of the epidermis
and that the developmental onset of expression of the twomem-
brane proteases was coordinated and correlated with acquisi-
tion of epidermal barrier function. Purified soluble matriptase
efficiently converted soluble prostasin zymogen to an active
two-chain form that formed SDS-stable complexes with the ser-
pin protease nexin-1. Whereas two forms of prostasin with
molecular weights corresponding to the prostasin zymogen and
active prostasin were present in wild type epidermis, prostasin
was exclusively found in the zymogen form in matriptase-defi-
cient epidermis. These data suggest that matriptase, an autoac-
tivating protease, acts upstream from prostasin to initiate a
zymogen cascade that is essential for epidermal differentiation.

The serine proteases constitute one of the largest classes of
proteolytic enzymes and have evolved to perform specialized
functions. Trypsin-like serine proteases typically are synthe-
sized as inactive zymogens that are activated by a single endo-
proteolytic cleavage. This group of enzymes often acts in either
single or complex, highly regulated zymogen cascades to con-
trol important biological processes such as coagulation, fibrin-
olysis, blood pressure, and digestion (1–4).
The stratum corneum is the outermost, terminally differen-

tiated layer of the epidermis that provides a physical barrier
protecting the body from fluid loss, as well as frommechanical,
chemical, andmicrobial insults. The stratum corneum is a two-
compartment structure consisting of a lipid-enriched extracel-
lular matrix in which an interlocking meshwork of flattened
dead keratinocytes (corneocytes) are embedded (5–7).Our pre-
vious studies have shown that the targeted deletion of the type
II transmembrane trypsin-like serine protease, matriptase,
leads to loss of inwards and outwards epidermal barrier func-
tion due to incomplete corneocyte differentiation and abnor-
mal intercorneocyte lipid extrusion correlating at the molecu-
lar level with defective proteolytic processing of profilaggrin
(8–11). Interestingly, mice with the targeted deletion of the
glycosylphosphatidylinositol (GPI)3-anchored trypsin-like ser-
ine protease, prostasin (PRSS8), in keratinized tissues recently
were reported to display the identical spectrum of deficiencies
in stratum corneum formation (12) to those described for
matriptase-deficient mice (summarized in Table 1). Moreover,
both protease-deficient transgenic mouse strains displayed
identical hair follicle defects and thymic abnormalities
(Table 1).
The identical phenotypes of matriptase- and prostasin-defi-

cient mice suggested that the two membrane serine proteases
either could be components of two distinct zymogen cascades
that each are critical to terminal epidermal differentiation or,
alternatively, could be components of the same proteolytic cas-
cade. Here we present histological, biochemical, and genetic
evidence that matriptase and prostasin define a single zymogen
activation cascade in the epidermis, that matriptase acts
upstream of prostasin, and that matriptase is an essential epi-
dermal activator of the prostasin zymogen.

EXPERIMENTAL PROCEDURES

Mice—Experiments followed institutional guidelines.
Matriptase knock-out and �-galactosidase-tagged matriptase
knock-in mice were described (8, 11).
Histological Stains—X-gal and immunohistochemical stains

were performed as described (11). The mouse prostasin anti-
body has been described (13).
Generation of Soluble Recombinant Prostasin—HEK-293T

cells were transfected with pCMV-SPORT6 expression vector
containing full-length mouse prostasin (I.M.A.G.E clone
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3600399) or full-length human prostasin cDNA (I.M.A.G.E
clone 3138532) in pIRES2-EGFP (Clontech Laboratories,
Mountain View, CA) using Polyfect reagent (Qiagen Inc.,
Valencia, CA). Cells were lysed 24–48 h after transfection
using 50 mM Tris, pH 8.0, 150 mMNaCl, 0.1% SDS, 1% Nonidet
P-40 with protease inhibitor mixture (Sigma). For phospha-
tidylinositol-specific phospholipase C (PI-PLC) treatment,
washed cells were mechanically lifted from the plates by gentle
pipetting, incubated with 1 unit/ml PI-PLC (Sigma) in phos-
phate-buffered saline for 4 h at 4 °C, and centrifuged for 10min
at 1000 � g, and the supernatant containing the PI-PLC-re-
leased proteins was collected. Protein concentrations were
determined with a BCA protein assay Kit (Pierce). The concen-
tration of PI-PLC-released prostasin was estimated byWestern
blot by serial dilution against a known concentration of acti-
vated prostasin obtained commercially.
Prostasin Zymogen Activation by Matriptase—Human solu-

ble prostasin (�0.1 �M) was incubated with 1 or 10 nM recom-
binant active humanmatriptase serine protease domain (14) for
1 h at 37 °C in 50 mM Tris, pH 8.5, 100 nM NaCl. For complex
formation, protease nexin-1 (PN-1), 700 mM PN-1 (R&D Sys-
tems, Minneapolis, MN) was added for 1 h at 37 °C. Proteins
were analyzed by 4–12% reducing SDS-PAGE and Western
blotting using amonoclonal anti-prostasin antibody (Pharmin-
gen) and SuperSignal West Dura extended duration kit
(Pierce).
Biochemical Analysis of Mouse Epidermis—Epidermis was

isolated from newbornmice as described (9), ground into a fine
powder in liquid nitrogen, homogenized in ice-cold lysis buffer
(50 mM Tris at pH 7.4, 2 mM EDTA, 150 mMNaCl, 1% Nonidet
P-40, 0.5% Triton X-100, 0.1% SDS) with protease inhibitor
mixture set III (Calbiochem), cleared by centrifugation at
13,000 � g for 20 min at 4 °C, and protein concentration deter-
mined by the Bio-Rad protein assay (Bio-Rad). Proteins were
resolved by 13% reducing SDS-PAGE and analyzed byWestern
blot using the monoclonal anti-prostasin antibody described
above.Densitometric scanning ofWestern blotswas performed
using NIH Image software.
Real-timePCR—RNAwas isolated from skin as described (8).

The prostasin primers 5�-GGAGGCAAGGATGCCTGCC-
A-3� and 5�-GAGAGTGGGCCCCCAGAGTCAC-3� were
used for quantitative real-time PCR. Prostasin expression levels
were normalized against GAPDHmRNA levels in each sample,
amplified with the primers 5�-GTGAAGCAGGCATCTGAG-
G-3� and 5�-CATCGAAGGTGGAAGAGTGG-3�.

RESULTS AND DISCUSSION

Co-localization and Coordinated Expression of Matriptase
and Prostasin during Terminal Epidermal Differentiation—To
analyze expression of matriptase and prostasin in mouse epi-
dermis, we used a knock-in mouse (11) that carries one wild
typematriptase allele and one allele where the exons encoding
the serine protease domain ofmatriptase have been replaced by
a �-galactosidase marker gene (matriptase�/E16�-gal mice).
This mouse strain synthesizes a matriptase-�-galactosidase
fusion protein under transcriptional control of the endogenous
matriptase gene and can be used as a sensitive marker for
matriptase expression using X-gal staining. The co-localization

of matriptase with prostasin was analyzed by immunohisto-
chemistry of serial sections or, when staining intensity permit-
ted, by immunohistochemical staining of X-gal-stained sec-
tions with prostasin antibodies to simultaneously visualize the
two proteases. As described recently (11), X-gal staining of the
skin of matriptase�/E16�-gal mice showed that matriptase
expression was confined to the uppermost living layer of the
interfollicular epidermis of 7-day-old mouse pups (Fig. 1A).
Interestingly, immunohistochemical staining of interfollicular
epidermis revealed a similar localization of prostasin (Fig. 1B).
Combined X-gal staining for matriptase and immunohisto-
chemical staining for prostasin revealed overlapping expression
in interfollicular epidermis at this age (Fig. 1C) as well as in
newborn pups (Fig. 1E), demonstrating that the two mem-
brane-associated proteases have the potential to physically
interact in vivo. To determine the time of onset of expression of
matriptase and prostasin in the developing epidermis, com-
bined X-gal staining and immunohistochemistry of
matriptase�/E16�-gal embryos at embryonic day (E) 14.5 to
E16.5 was performed. At E14.5 and E15.5 no expression of
either of the two serine proteases could be detected (Fig. 1, F
andG). At E16.5, however, both matriptase and prostasin were
expressed (Fig. 1H), temporally correlating with stratum cor-
neum formation and the onset of acquisition of the epidermal
barrier (15). X-gal staining combined with immunohistochem-
ical staining for the marker of basal keratinocytes, cytokeratin-
14, demonstrated the clear suprabasal expression of the two
proteases at this developmental stage (Fig. 1I).
Matriptase Activates the Prostasin Zymogen in a Cell-free

System—Previous studies have shown that the matriptase
zymogen undergoes autoactivation during synthesis (16, 17). In
contrast, the prostasin zymogen is unable to undergo autoacti-
vation and a physiological activator of prostasin has not been
identified (18). Activation of the prostasin zymogen occurs by
endoproteolytic cleavage after Arg12 within the amino acid
sequence QPR12-ITG, a cleavage reaction that could be medi-
ated by matriptase, based on studies of matriptase specificity
(19). These observations suggested that matriptase would act
upstreamof prostasin if the two proteases were part of the same
zymogen cascade. To test this, we expressed prostasin in HEK-
293T cells. The recombinant prostasin was released from the
cell surface with PI-PLC to generate a soluble form of prostasin
that presented as a dominant 40-kDa species and two minor
species with slightly higher and lower electrophoretic mobility
when analyzed by SDS-PAGE and Western blotting under
reducing conditions (Fig. 2, lane 1). Prostasin generated this
way appeared to be predominantly in the zymogen form, as it
did not form complexes with the cognate serpin PN-1, which
forms SDS-stable complexes with active prostasin (13) but not
with the prostasin zymogen (Fig. 2, compare lane 2with lanes 4
and 6). This suggested that the faint higher and lowermolecular
weight species both could represent glycosylation variants of
the zymogen (13). Activation of the prostasin zymogen leads to
the formation of active two-chain prostasin, which can be dis-
tinguished from the prostasin zymogen by a small increase in
electrophoretic mobility in high-percentage SDS-PAGE gels
after reduction of the single disulfide bridge that links the two
chains (13). Exposure of soluble prostasin zymogen to either 1
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or 10 nM active matriptase protease domain led to the for-
mation of a prominent immunoreactive band with the
mobility expected for active prostasin (Fig. 2, compare lane 1

with lanes 3 and 5). The percentage of prostasin zymogen
converted to this higher mobility species by matriptase var-
ied between prostasin preparations and was never complete,
even with very high matriptase concentrations (data not
shown). This suggested that not all recombinant prostasin
released from HEK-293T cells by PI-PLC was in a conforma-
tional state that permitted the activation by matriptase. To
confirm that the cleavage of the prostasin zymogen by
matriptase leads to the formation of active prostasin, we
incubated untreated and matriptase-treated prostasin with
PN-1 and detected prostasin-PN-1 complexes by Western
blotting using anti-prostasin antibodies. In the absence of
preincubation with matriptase, no prostasin-PN-1 complex
was observed (Fig. 2, lane 2). However, when prostasin
zymogen was first exposed to matriptase and then incubated
with PN-1, a prominent 85-kDa molecular mass complex
that was immunoreactive with anti-prostasin antibodies was
observed (Fig. 2, compare lane 2 with lanes 4 and 6). Taken
together, these data show that the matriptase catalytic
domain is capable of converting the zymogen of prostasin to
active, serpin-reactive prostasin in a cell-free system.

FIGURE 1. Matriptase and prostasin co-localize and are coordinately expressed in mouse epidermis. X-gal staining (A), prostasin immunohisto-
chemistry (B), combined X-gal staining and prostasin immunohistochemistry (C–H), and combined X-gal staining and cytokeratin-14 (K14) immunohis-
tochemistry (I) of the epidermis of matriptase�/E16�-gal mice (A, C and E–I) of 7-day-old (A–D) or newborn (E) pups, or E14.5 (F), E15.5 (G), and E16.5
embryos (H and I). Matriptase (cyan, examples with arrows in A, C, E, H, and I) and prostasin (brown, examples with arrowheads in B, C, E, and H) are
co-expressed in the uppermost terminally differentiating layer of the epidermis of 7-day-old (C) and newborn (E) mice. No expression of either
membrane-associated protease is observed at E14.5 (F) or E15.5 (G), but both matriptase (cyan, examples with arrows) and prostasin (brown, examples
with arrowheads) are expressed in the developing epidermis at E16.5 (H), located in suprabasal keratinocytes (I), as revealed by combined X-gal staining
for matriptase (cyan examples with arrowheads) and cytokeratin-14 staining (brown, examples with open arrowheads). Sections were counterstained
with hematoxylin to visualize nuclei. Size bars: A–D and F–I, 20 �m. E, 10 �m.

FIGURE 2. Matriptase converts prostasin zymogen to active prostasin.
Human prostasin zymogen was expressed in HEK-293T cells and released
from the surface of cells by hydrolysis of the GPI anchor with PI-PLC. Soluble
prostasin zymogen (�0.1 �M) was incubated for 1 h at 37 °C with buffer (lanes
1 and 2), 1 nM (lanes 3 and 4), or 10 nM (lanes 5 and 6) soluble active human
matriptase. At the end of the incubation, buffer (lanes 1, 3, and 5) or 700 nM

PN-1 (lanes 2, 4, and 6) was added for 1 h a 37 °C. Proteins were analyzed by
SDS-PAGE under reducing conditions, followed by Western blot with a mono-
clonal prostasin antibody. The positions of the prostasin zymogen, activated
prostasin, and prostasin-PN-1 complexes are indicated. The positions of
molecular mass markers (kDa) are indicated on the left.
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Lack of Proteolytically Processed Prostasin Zymogen and
Prostasin Zymogen Accumulation in Matriptase-ablated
Epidermis—The striking phenotypic similarities between
matriptase- and prostasin-deficient mice (Table 1), when com-
bined with our data presented above, strongly suggested that
matriptase could be a physiological activator of the prostasin
zymogen during terminal epidermal differentiation and pre-
dicted the existence of amatriptase-prostasin zymogen cascade
in epidermal differentiation. To definitively test this, we deter-
mined the state of activation of epidermal prostasin in the pres-
ence and absence of matriptase. Protein lysates were prepared
from the epidermis of newborn wild type mice and their
matriptase-deficient littermates (8), and prostasin processing
was analyzed by the separation of the protein lysates by reduc-
ing SDS/PAGE on high percentage gradient gels, followed by
Western blotting using prostasin antibodies (Fig. 3A). In wild
type epidermis, prostasin was found in two forms: a 39-kDa
form, compatiblewith the apparentmolecularmass of the pros-
tasin zymogen, and a 37-kDa form, compatible with activated
prostasin (Fig. 3, lanes 3–5). In contrast, in matriptase-ablated
epidermis, prostasin was exclusively found in the highermolec-
ular mass 39-kDa zymogen form. Furthermore, the 39-kDa

form of prostasin was frequently more abundant inmatriptase-
deficient epidermis (Fig. 3, lanes 6–8, and data not shown).
This increase in prostasin zymogen did not appear to be caused
by a corresponding increase in the steady state level of prostasin
mRNA as judged by real-time PCR analysis (data not shown),
suggesting that the accumulation was caused by loss of zymo-
gen activation by matriptase. To quantitatively assess the for-
mation of active prostasin in matriptase-sufficient and -defi-
cient epidermis, protein extracts from the epidermis of five
matriptase-sufficient and five matriptase-deficient littermates
were analyzed by Western blot. The fraction of total prostasin
presenting as active prostasinwas determined by densitometric
scanning of the blot (Fig. 3B). In matriptase-sufficient epider-
mis, 40–51% of prostasin was in the active two-chain form,
while the amount of active prostasin in matriptase-deficient
epidermis was below the level of detection. Taken together,
these data provide definitive evidence that matriptase is essen-
tial for the proteolytic processing of prostasin in the epidermis.
The coordinated expression and co-localization of

matriptase and prostasin in the epidermis and the activation of
prostasin zymogen by matriptase in vitro and in vivo, when
combined with the identical phenotype ofmatriptase and pros-
tasin-deficient mice, provides compelling evidence for the
existence of amatriptase-prostasin zymogen activation cascade
regulating terminal epidermal differentiation. This suggests
that loss of profilaggrin processing, defective corneocyte matu-
ration, and abnormal intercorneocyte lipid extrusion in
matriptase-deficient epidermis may all be secondary to loss of
prostasin zymogen activation. Increasing evidence indicates
that terminal epidermal differentiation is regulated by a sophis-
ticated cascade of serine proteases and serine protease inhibi-
tors that all become expressed in transitional layer cells during
stratum corneum formation and undergo sequential activation
during stratum corneum maturation and shedding (8, 11,
20–29). The serine proteases currently proposed to be critical
for stratum corneum formation include matriptase, prostasin,
stratum corneum tryptic enzyme, stratum corneum chymot-
ryptic enzyme, furin, and profilaggrin processing endopepti-
dase1. Additionally, serine protease inhibitors, including the
Kunitz-type serine protease inhibitor, hepatocyte growth factor

FIGURE 3. Matriptase is required for prostasin activation in mouse epidermis. A, protein lysates were prepared from the epidermis of three newborn
matriptase-sufficient (lanes 3–5) and three matriptase-deficient littermate mice (lanes 6 – 8) and subjected to SDS-PAGE under reducing conditions followed by
Western blot using a mouse monoclonal anti-prostasin antibody. Lanes 1 and 2 are lysates of concentrated conditioned medium from PI-PLC-treated HEK-293T
cells transfected with a mouse prostasin expression plasmid (PI-PLC) and cell lysate from mouse prostasin-transfected HEK-293T cells (Cell lysate), respectively.
The positions of the prostasin zymogen and active prostasin are indicated. The positions of mouse IgG heavy chain and light chain, which are recognized by the
secondary antibody, are also indicated. The position of the molecular mass markers (kDa) is indicated on the left. B, quantitative analysis of prostasin zymogen
activation. Epidermal lysates from five newborn matriptase-sufficient and five matriptase-deficient littermate mice were subjected to SDS-PAGE and Western
blotting. The fraction of active prostasin as a function of total prostasin in each epidermal lysate was estimated by densitometric scanning of the blot. Error bars
indicate standard deviation. p � 0.008, Wilcoxon rank-sum test, two-tailed.

TABLE 1
Phenotypic comparison of matriptase and prostasin-deficient mice
Data were compiled from Refs. 8, 9, and 12.

Parameter Matriptase�/� Prostasin�/�
Survival Postnatal lethality Postnatal lethality
Body weight and body
length

Reduced Reduced

External appearance of
skin

Reddish and wrinkled Reddish and wrinkled

Hair follicles Immature Immature
Thymus Hypoplastic Hypoplastic
Inwards epidermal barrier
function

Impaired Impaired

Outwards epidermal
barrier function

Impaired Impaired

Corneocytes Enlarged Enlarged
Epidermal lipid
composition

Abnormal Abnormal

Filaggrin Absent Absent
Profilaggrin processing Impaired Impaired
Epidermal differentiation
markers besides
profilaggrin/filaggrin

Normal Normal
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activator inhibitor-1, and the Kazal-type, multidomain serine
protease inhibitor, SPINK5, could have key roles in regulating
the activity of one or several of these proteases in both human
and mouse epidermis. Pertubations causing increased or
decreased serine protease activity in the upper epidermis have
serious pathophysiological consequences. Thus, ablation of
matriptase or prostasin prevents acquisition of the epidermal
barrier by blocking terminal epidermal differentiation (9, 12),
while, conversely, SPINK5 deficiency or overexpression of stra-
tum corneum chymotryptic enzyme compromises the epider-
mal barrier through premature epidermal differentiation and
accelerated shedding of the stratum corneum (21–23, 26). It
remains to be determined whether a single proteolytic cascade
or multiple independent proteolytic cascades are operational
during terminal epidermal differentiation. Previously, stratum
corneum tryptic enzyme has been proposed to act upstream of
stratum corneum chymotryptic enzyme during the desquama-
tion of stratum corneum (25), and our results now show that
matriptase acts upstream of prostasin during terminal epider-
mal differentiation. In addition to loss of epidermal barrier for-
mation, matriptase deficiency also severely impairs stratum
corneum desquamation (9). These observations suggest the
intriguing hypothesis that the four serine proteases and
SPINK5 could be part of a single zymogen cascade with a com-
plexity reminiscent of other serine protease zymogen cascades,
such as those involved in blood coagulation or digestion.
Matriptase and prostasin both have a fairly wide expression

in epithelial tissues and both are frequently dysregulated in epi-
thelial tumors (10, 30–43). The role ofmatriptase as a prostasin
zymogen activator and the potential function of thematriptase-
prostasin cascade in other physiological processes and in
pathophysiological processes, such as cancer, are clearly impor-
tant areas for future study.
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