40 research outputs found

    Toward sustainable composites: Graphene‐modified jute fiber composites with bio‐based epoxy resin

    Get PDF
    Sustainable natural fiber reinforced composites have attracted significant interest due to the growing environmental concerns with conventional synthetic fiber as well as petroleum-based resins. One promising approach to reducing the large carbon footprint of petroleum-based resins is the use of bio-based thermoset resins. However, current fiber-reinforced bio-based epoxy composites exhibit relatively lower mechanical properties such as tensile, flexural strength, and modulus, which limits their wider application. Here the fabrication of high-performance composites using jute fibers is reported, modified with graphene nanoplates (GNP) and graphene oxide (GO), and reinforced with bio-based epoxy resin. It is demonstrated that physical and chemical treatments of jute fibers significantly improve their fiber volume fraction (Vf) and matrix adhesion, leading to enhanced mechanical properties of the resulting Jute/Bio-epoxy (J/BE) composites. Furthermore, the incorporation of GNP and GO further increases the tensile and flexural strength of the J/BE composites. The study reveals the potential of graphene-based jute fiber-reinforced composites with bio-based epoxy resin as a sustainable and high-performance material for a wide range of applications. This work contributes to the development of sustainable composites that have the potential to reduce the negative environmental impact of conventional materials while also offering improved mechanical properties

    Process Monitoring Using Data-Based Fault Detection Techniques: Comparative Studies

    Get PDF
    Data based monitoring methods are often utilized to carry out fault detection (FD) when process models may not necessarily be available. The partial least square (PLS) and principle component analysis (PCA) are two basic types of multivariate FD methods, however, both of them can only be used to monitor linear processes. Among these extended data based methods, the kernel PCA (KPCA) and kernel PLS (KPLS) are the most well-known and widely adopted. KPCA and KPLS models have several advantages, since, they do not require nonlinear optimization, and only the solution of an eigenvalue problem is required. Also, they provide a better understanding of what kind of nonlinear features are extracted: the number of the principal components (PCs) in a feature space is fixed a priori by selecting the appropriate kernel function. Therefore, the objective of this work is to use KPCA and KPLS techniques to monitor nonlinear data. The improved FD performance of KPCA and KPLS is illustrated through two simulated examples, one using synthetic data and the other using simulated continuously stirred tank reactor (CSTR) data. The results demonstrate that both KPCA and KPLS methods are able to provide better detection compared to the linear versions

    The effect of surface treatments and graphene-based modifications on mechanical properties of natural jute fiber composites: A review

    Get PDF
    Natural fiber reinforced composites (FRC) are of great interests, because of their biodegradability, recyclability, and environmental benefits over synthetic FRC. Natural jute FRC could provide an environmentally sustainable, light weight, and cost-effective alternative to synthetic FRC. However, the application of natural jute FRC is limited because of their poor mechanical and interfacial properties. Graphene and its derivatives could potentially be applied to modify jute fiber surface for manufacturing natural FRC with excellent mechanical properties, and lower environmental impacts. Here, we review the physical and chemical treatments, and graphene-based modifications of jute fibers, and their effect on mechanical properties of jute FRC. We introduce jute fiber structure, chemical compositions, and their potential applications first. We then provide an overview of various surface treatments used to improve mechanical properties of jute FRC. We discuss and compare various graphene derivative-based surface modifications of jute fibers, and their impact on the performance of FRC. Finally, we provide our future perspective on graphene-based jute fibers research to enable next generation strong and sustainable FRC for high performance engineering applications without conferring environmental problems

    Environmental impacts of personal protective clothing used to combat COVID-19

    Get PDF
    Personal protective clothing is critical to shield users from highly infectious diseases including COVID-19. Such clothing is predominantly single-use, made of plastic-based synthetic fibers such as polypropylene and polyester, low cost and able to provide protection against pathogens. However, the environmental impacts of synthetic fiber-based clothing are significant and well-documented. Despite growing environmental concerns with single-use plastic-based protective clothing, the recent COVID-19 pandemic has seen a significant increase in their use, which could result in a further surge of oceanic plastic pollution, adding to the mass of plastic waste that already threatens marine life. In this review, the nature of the raw materials involved in the production of such clothing, as well as manufacturing techniques and the personal protective equipment supply chain are briefly discussed. The environmental impacts at critical points in the protective clothing value chain are identified from production to consumption, focusing on water use, chemical pollution, CO2 emissions, and waste. On the basis of these environmental impacts, the need for fundamental changes in the business model is outlined, including increased usage of reusable protective clothing, addressing supply chain “bottlenecks”, establishing better waste management, and the use of sustainable materials and processes without associated environmental problems

    Sustainable fiber‐reinforced composites: A Review

    Get PDF
    Sustainable fiber reinforced polymer (FRP) composites from renewable and biodegradable fibrous materials and polymer matrices are of great interest, as they can potentially reduce environmental impacts. However, the overall properties of such composites are still far from the high-performance conventional glass or carbon FRP composites. Therefore, a balance between composite performance and biodegradability is required with approaches to what one might call an eco-friendly composite. This review provides an overview of sustainable FRP composites, their manufacturing techniques, and sustainability in general at materials, manufacturing, and end-of-life levels. Sustainable plant-based natural fibers and polymer matrices are also summarized, followed by an overview of their modification techniques to obtain high-performance, multifunctional, and sustainable FRP composites. Current state-of-the-art mechanical and functional properties of such composites are then surveyed and provide an overview of their potential applications in various industries, including automobile, aerospace, construction, medical, sports, and electronics. Finally, future market trends, current challenges, and the future perspective on sustainable natural FRP composites are discussed

    Coronavirus disease 2019 and future pandemics: Impacts on livestock health and production and possible mitigation measures

    Get PDF
    The World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic on March 11, 2020. COVID-19, the current global health emergency, is wreaking havoc on human health systems and, to a lesser degree, on animals globally. The outbreak has continued since the first report of COVID-19 in China in December 2019, and the second and third waves of the outbreak have already begun in several countries. COVID-19 is expected to have adverse effects on crop production, food security, integrated pest control, tourism, the car industry, and other sectors of the global economy. COVID-19 induces a range of effects in livestock that is reflected economically since human health and livelihood are intertwined with animal health. We summarize the potentially harmful effects of COVID-19 on livestock and possible mitigation steps in response to this global outbreak. Mitigation of the negative effects of COVID-19 and future pandemics on livestock requires the implementation of current guidelines

    The characterisation of diarrhoeagenic verotoxin producing non-o157 coli among young children in Kuantan, Malaysia

    Get PDF
    Background: Diarrhoeagenic verotoxin producing non-O157 Escherichia coli (VTEC) are associated with endemic infantile diarrhoea-causing morbidity and mortality worldwide. VTEC can also cause severe illness and has an impact on outbreaks, especially in developing countries. This study aims to investigate the prevalence and characterisation of VTEC and their association in causing infectious diarrhoea among Malaysian children. Methods: Standard microbiological techniques identified a total of 137 non-repeated, clinically significant E. coli isolates. Serological assays discerned non-O157 E. coli serogroup, subjected to virulence screen (VT1 and VT2) by a polymerase chain reaction (PCR). Results: Different PCR sets characterised the 49 clinical isolates of sorbitol positive non-O157 E. coli. Twenty-nine isolates harboured verotoxin genes associated with diarrhoea among children (≀ 5 years old). Among the 29 (59.18%) strains of verotoxin producing E. coli* genotypes VT1 and VT2 were detected in 21 (42.85%) and 5 (10.20%) isolates respectively, while both VT1 and VT2 genes were confirmed in 3 (6.12%) isolates. Conclusion: This study evaluates on the prevalence, serological characteristics and antimicrobial susceptibility patterns of VTEC diarrhoea affected children (≀ 5 years old). Besides, the prevalence of verotoxin gene was determined as a root cause of diarrhoea among Malaysian children

    Smart and multifunctional fiber‐reinforced composites of 2D heterostructure‐based textiles

    Get PDF
    Smart and multifunctional fiber reinforced polymer (FRP) composites with energy storage, sensing, and heating capabilities have gained significant interest for automotive, civil, and aerospace applications. However, achieving smart and multifunctional capabilities in an FRP composite while maintaining desired mechanical properties remains challenging. Here, a novel approach for layer‐by‐layer (LBL) deposition of 2D material (graphene and molybdenum disulfide, MoS2)‐based heterostructure onto glass fiber fabric using a highly scalable manufacturing technique at a remarkable speed of ≈150 m min−1 is reported. This process enables the creation of smart textiles with integrated energy storage, sensing, and heating functionalities. This methodology combines gel‐based electrolyte with a vacuum resin infusion technique, resulting in an efficient and stable smart FRP composite with an areal capacitance of up to ≈182 ”F cm−2 at 10 mV s−1. The composite exhibits exceptional cyclic stability, maintaining ≈90% capacitance after 1000 cycles. Moreover, the smart composite demonstrates joule heating, reaching from ∌24 to ∌27 °C within 120 s at 25 V.. Additionally, the smart composite displays strain sensitivity by altering electrical resistance with longitudinal strain, enabling structural health monitoring. These findings highlight the potential of smart composites for multifunctional applications and provide an important step toward realizing their actual real‐world applications
    corecore