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Abstract

Data based monitoring methods are often utilized to carry out fault detection (FD) when
process models may not necessarily be available. The partial least square (PLS) and
principle component analysis (PCA) are two basic types of multivariate FD methods,
however, both of them can only be used to monitor linear processes. Among these
extended data based methods, the kernel PCA (KPCA) and kernel PLS (KPLS) are the
most well-known and widely adopted. KPCA and KPLS models have several advan-
tages, since, they do not require nonlinear optimization, and only the solution of an
eigenvalue problem is required. Also, they provide a better understanding of what kind
of nonlinear features are extracted: the number of the principal components (PCs) in a
feature space is fixed a priori by selecting the appropriate kernel function. Therefore, the
objective of this work is to use KPCA and KPLS techniques to monitor nonlinear data.
The improved FD performance of KPCA and KPLS is illustrated through two simulated
examples, one using synthetic data and the other using simulated continuously stirred
tank reactor (CSTR) data. The results demonstrate that both KPCA and KPLS methods
are able to provide better detection compared to the linear versions.

Keywords: principal component analysis, partial least squares, kernels, fault detection,
process monitoring
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1. Introduction

Process monitoring is an essential aspect of nearly all industrial processes, often required both

to ensure safe operation and to maintain product quality. Process monitoring is generally

carried out in two phases: detection and diagnosis. This chapter focuses only on the fault

detection aspect. Fault detection methods can be categorized using a number of different

methodologies. One popular method of categorization is into quantitative model-based

methods, qualitative model-based methods, and data (process history)-based methods [1–3].

Figure 1 illustrates a general schematic of fault detection phase.

Quantitative model-based methods require knowledge of the process model, while qualitative

model-based methods require expert knowledge of the given process. Hence, data-based

methods are often used as they require neither prior knowledge of the process model nor

expert knowledge of the process [4].

Data-based monitoring methods can be further classified into input model-based methods and

input-output model-based methods. Input model-based methods only require the data matrix

of the input process variables, while input-output model-based methods require both the input

and output data matrices in order to formulate a model and carry out fault detection [5]. Input

model-based methods are sometimes utilized when the input-output models cannot be formed

due to the high dimensionality and complexity of a system being monitored [6]. However,

input-output model-based methods do have the added advantage of being able to detect faults

in both the process and the variables [5].

Principal component analysis (PCA) is a widely used input model-based method that has been

used for monitoring a number of processes including air quality [7], water treatment [8], and

semiconductor manufacturing [9]. On the other hand, partial least squares (PLS) are an input-

output model-based method that has been applied in chemical processes to monitor online

measurement variables and also to monitor and predict the output quality variable [10]. PLS

Figure 1. Schematic illustration of detection phase.
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has been applied for the monitoring of distillation columns, batch reactors [11], continuous

polymerization processes [12], and other similar industrial processes, which are described by

input-output models. However, both PCA and PLS are fault detection techniques that only

work reasonably well with linear data. PCA and PLS have been extended to handle nonlinear

data by utilizing kernels to transform the data to a higher dimensional space, where linear

relationships between variables can be drawn. The extensions kernel principal component

analysis (KPCA) and kernel partial least squares (KPLS) have both shown improved perfor-

mance over the conventional PCA and PLS techniques when handling nonlinear data [5, 13].

T2 and Q charts are commonly used as fault detection statistics. In the literature, it has been

seen that T2 test is less effective fault detection technique compared to Q statistic; this is

because T2 test can only represent variation of the data in the principle component and not in

residue of the model [14].

In our previous works [5, 13, 15], we addressed the problem of fault detection using linear and

nonlinear input models (PCA and kernel PCA) and input-output model (PLS and kernel PLS)-

based generalized likelihood ratio test (GLRT), in which PCA, kernel PCA, PLS, and kernel

PLS methods are used for modeling and the univariate GLRT chart is used for fault detection.

In the current work, we propose to use the PCA, kernel PCA, PLS, and kernel PLS methods for

multivariate fault detection through their multivariate charts Q and T2. The fault detection

performance is evaluated using two examples, one using simulated synthetic data and the

other utilizing a simulated continuous stirred tank reactor (CSTR) model.

The remainder of this chapter is organized as follows. Section 1 introduces linear PCA and

PLS, along with the fault detection indices used for these methods. Section 2 then describes the

idea of using kernels for nonlinear transformation of data, along with the kernel fault detection

extensions: KPCA and KPLS. In Section 3, two illustrative examples are presented, one using

simulated synthetic data and the other utilizing a simulated continuous stirred tank reactor. At

the end, the conclusions are presented in Section 4.

2. Conventional linear fault detection methods

Before constructing either the PCA or PLS models, data are generally preprocessed to ensure

that all process variables in the data matrix are scaled to zero mean and unit variance. This step

is essential as different process variables are usually measured with varying standard devia-

tions and means and often using different units.

2.1. Principal component analysis (PCA)

Consider the following input data matrix, X ∈ Rn · m, where m and n represent the number of

process variables and the number of observations, respectively. After preprocessing the data,

single value decomposition (SVD) can be utilized to express the input data matrix as follows:

X ¼ TPT (1)
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where T ¼ t1, t2, t3…tm½ �∈Rn·m is a matrix of the transformed variables, where each column

represents the score vectors or the transformed variables, and P ¼ p1, p2, p3…pm
� �

∈Rm ·m is a

matrix of the orthogonal vectors, where each column is also known as loading vectors, and

these are eigenvectors that are associated with the covariance matrix of the input data matrix

X. The covariance matrix can be computed as follows [13]:

X
¼

1

n� 1
XTX ¼ PΛPT with PPT ¼ PTP ¼ Im (2)

where Λ ¼ diag λ1;λ2;…;λmð Þ is a diagonal matrix that contains the eigenvalues that are

related to the m principal components λ1 > λ2 >… > λmð Þ, and Im is the identity matrix [16].

It should be noted that the model built by PCA uses the same number of principal components

as the original number of process variables in the input data matrix (m). However, since many

industrial processes may contain process variables that are highly correlated, a smaller number

of principal components can be utilized to capture the variation in the process data [6]. The

quality of the model built by PCA is dictated by the number of principal components obtained.

Overestimating the number could introduce noise that may mask important features in the

data, while underestimating the number could decrease the prediction ability of the model [17].

Therefore, selection of the number of principal components is vital, and several methods have

been developed for this purpose. A few popular techniques are cumulative percent variance

(CPV) [13], scree plot and profile likelihood [18], and cross validation [19]. CPV is commonly

utilized due to its computational simplicity and because it provides a good estimate of the

number of principal components that need to be retained for most practical applications. CPV

can be computed as follows [13]:

CPV lð Þ ¼

Xl

i¼1
λi

trace Σð Þ
· 100 (3)

CPV is used to select the smallest number of principal components that represents a certain

percentage of the total variance (e.g., 99%). Once the number of principal components to retain

is determined, the input data matrix can then be expressed as [13]:

X ¼ TP ¼
h
bT ~T

ih
bP ~P

iT
(4)

where bT ∈Rn· l and ~T ¼ ∈Rn ·m�l represent the matrices containing the l retained principal

components and the ignored (m� l) principal components, respectively. Likewise, the matrices

that contain the l retained eigenvectors and the ignored (m� l) eigenvectors are represented by

bP ∈Rm· l and ~P ∈Rm ·m�l, respectively.

After expansion X can be expressed as [13]

X ¼ bTbPT þ ~P ~TT ¼ XbPbPT
zfflffl}|fflffl{
bX

þX Im � bPbPT
� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{E

(5)
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where matrix bX is the modeled variation of X computed utilizing only the l retained principal

components, while matrix E represents the residual space formed by variations that corre-

spond to process noise.

The PCA model can be illustrated as shown in Figure 2.

2.2. Partial least squares (PLS)

PLS is a popular input-output technique used for modeling, regression and as a classification

tool, which has been extended to fault detection purpose [20]. PLS includes process variables

(X ∈ Rn · m) and the quality variables (Y ∈ Rn · p) with a linear relationship between input and

output score vectors. Nonlinear iterative partial least square (NIPALS) algorithm developed by

Word et al. is used to compute score matrices and loading vectors [21]:

X ¼ TPT
þ E ¼

XM

i¼1

tipi þ E

Y ¼ UQT
þ F ¼

XM

j¼1

ujq
t
j þ F

(6)

where E ∈ Rn · m and F ∈ Rn · p are the PLS model residues; T ∈ Rn · M andU ∈ Rn · M are the

orthonormal input and output score matrix, respectively; P and Q are the loading vectors of

the input (X) and output (Y) matrices, respectively; m and n are the number of process vari-

ables and observations in input (X) matrix; p is the number of quality variables in output (Y)

matrix; and M is the total number of latent variables extracted. NIPALS method is shown in

Figure 2. Schematic illustration of PCA.
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Algorithm 1; X and Y matrixes are first standardized by mean centering and unit variance.

NIPALS algorithm is initialized by assigning one of the columns of output matrix (Y) as output

score vector (u); at each iteration t, u, p, and q are computed and stored; M latent variables are

extracted.

Another modification to NIPALS algorithm has been published in the literature [22]. In other

work, different variations of PLS technique have been stated. Qin et al. have presented recur-

sive PLS model [23], where PLS model is updated with new training data set; MacGregor et al.

[24] have developed multiblock PLS model to monitor subsection of process variables. While

for process monitoring of batch processes, PLS has been extended to multiway PLS technique

[25] to incorporate past batches in training data set.

PLS being an input-output type model can also be used as a regression tool, to predict quality

variable (Y) from online measurement variable (X). From PLS, model input and output matri-

ces are related by

Y ¼ BXþ G (7)

The regression coefficient B is computed as shown in Eq. (8):

B ¼ W PTW
� ��1

CT (8)

Substituting weights, loading vector P and constant C from Algorithm 1:

B ¼ XTU TTXXTY
� ��1

TTY (9)

From Eqs. (7) and (9), the output matrix (Y) is predicted as

Ynew ¼ XnewX
TU TTXXTU

� ��1
TTY þ G (10)

Algorithm 1: Modified NIPALS algorithm

1. Initialized output score: u = yi. (11)

2. Weights regressed on X: w = uTX/uTu. (12)

3. Normalizing weight: w = w/‖w‖. (13)

4. Weights R: r1 ¼ w1 (14)

rj ¼ ∏
j�1

i¼1
Im ·m � wip

T
j

� �

wj, j > 1:

5. Input Score vector: t = Xr/rTr. (15)

6. Input loading vector: p = XtT/tTt. (16)

7. Output loading vector: q = YtT/tTt. (17)
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8. Output score vector: u = Yq/qTq. (18)

9. Normalizing weights, loading vectors and scores:

p ¼
p

norm pð Þ
,w ¼ w · norm pð Þ, t ¼ t· norm pð Þ: (19)

10. Input and output matrices are deflated:

X ¼ X� tpT

Y ¼ Y � tqT
(20)

11. Store latent score vectors in T and U, loading vectors in P and Q

12. Repeat steps 2 to 11 until M latent variables are computed

2.3. Fault detection indices

Different fault detection indices can be used for the linear PCA and PLS techniques. The two

most popular indices are the T2 and Q statistics. T2 measures the variation of the model, while

the Q statistic measures the variation in the residual space, and these statistics will be

described next.

2.3.1. T2 statistic

The T2 statistic measures the variation in the principal components at different time samples

and is defined as follows [26, 27]:

T2 ¼ XTbPbΛbPT

X (21)

where bΛ ¼ diag λ1;λ2;…;λlð Þ is the diagonal matrix that contains the eigenvalues that are

associated with the retained principal components. For testing data, a fault is declared when

the T2 value exceeds the value of the threshold as follows:

T2
≥T2

α
¼

n2 � 1
� �

l

n n� lð Þ
F l, n� lð Þ (22)

where α is the level of significance, generally assigned a value between 90 and 99%, and F

(a, n � a) is the critical value of the Fisher-Snedecor distribution with n and n�a degrees of

freedom.

2.3.2. Q statistic

The Q statistic measures the projection of the data on to the residual subspace and allows the

user to measure how well the data fit the PCA model. The Q statistic is defined as follows [16]:

Q ¼ ~X
		 		 ¼ I � bPbPT

� �
X

			
			
2

(23)
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For testing data, a fault is declared when the threshold value is violated as follows [16]:

Q ≥Qα ¼ ϕ1

h0cα
ffiffiffiffiffiffiffiffi

2ϕ2

p

ϕ1

þ 1þ
ϕ2h0 h0 � 1ð Þ

ϕ2
1

(24)

where ϕi ¼
Xm

j¼lþ1
λi
j i ¼ 1, 2, 3, h0 ¼ 1�

2ϕ1ϕ3

3ϕ2
2

, where cα is the value obtained from the normal

distribution of significance α.

3. Nonlinear fault detection methods using kernel transformations

A popular nonlinear version of PCA and PLS is the projection of nonlinear data to a high-

dimensional feature space, where the linear fault detection method is applied in the features

space, F. The authors in Ref. [28] used projection of X for PLS response surface modeling using

the quadratic function as the mapping function:

Φ : χ ¼ R2 ! F ¼ R3 (25)

However, it is difficult to know the accurate nonlinear transformation function for nonlinear

data matrix to be linear in the feature space. According to Mercer’s theorem, orthogonal semi-

positive definite function can be used to map the data into the feature space instead of

knowing the explicit nonlinear function. This nonlinear function is called the kernel function

and is defined as the dot product of the mapped data in the feature space:

k Xi;Xj

� �

¼ Φ Xið ÞΦ Xj

� �

(26)

Thus, kernel-based multivariate methods can be defined as nonlinear fault detection methods

in which the input data matrix is mapped into high-dimensional feature space and developed

linear models can be applied in the feature space for fault detection purposes.

Commonly used kernel functions are given below [29]:

Radial basis function (RBF):

K X;Yð Þ ¼ exp
� X� Yk k2

c

 !

(27)

Polynomial function:

K X;Yð Þ ¼ X;Yh id (28)

Sigmoid function:

K X;Yð Þ ¼ tanh β0 X;Yh i þ β1
� �

(29)
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The next section describes the methodology of utilizing kernel transformations to extend linear

PCA and PLS to the hyperdimensional space in order to carry out fault detection of nonlinear

data.

3.1. Kernel principal component analysis (KPCA)

While PCA seeks to find the principal components by minimizing the data information loss in

the input space, KPCA does this in the feature space (F). For KPCA learning using training

data, X1,X2,…,Xn ∈Rm, nonlinear mapping gives Φ: X ∈ ℜ
m ! Z ∈ ℜ

h, where input data are

extended into the hyperdimensional feature space, where the dimension can be very large and

possibly infinite [30].

The covariance in the feature space can be computed as follows [31]:

CF ¼
1

n

X

n

j¼1

Φ Xj

� �

Φ Xj

� �T
(30)

Similar to PCA, the principal components in the feature space can be found by diagonalizing

the covariance matrix. In order to diagonalize the covariance matrix, it would be necessary to

solve the following eigenvalue problem in the feature space [31]:

λv ¼ CFv (31)

where λ ≥ 0 and represents the eigenvalues.

In order to solve the eigenvalue problem, the following equation is derived [32]:

nλα ¼ Kα (32)

where K and α are the n · n kernel matrix and eigenvectors, respectively.

For test vector X, the principal components (t) are extracted projecting Φ(X) onto the eigenvec-

tors vk in the feature space where k = 1,…,l:

tk ¼ vk,Φ Xð Þh i ¼
X

N

i¼1

α
k
i Φ Xið Þ,Φ Xð Þh i (33)

It is important to note that before carrying out KPCA, it is necessary to mean center the data in

the high-dimensional space. This can be accomplished by replacing the kernel matrix K with

the following [32]:

K ¼ K� 1nK�K1n þ 1nK1n (34)

where 1n ¼ 1
n

1 ⋯ 1
⋮ ⋱ ⋮

1 ⋯ 1

�

�

�

�

�

�

�

�

�

�

�

�

∈Rn· n.

Process Monitoring Using Data-Based Fault Detection Techniques: Comparative Studies
http://dx.doi.org/10.5772/67347

245



3.1.1. T2 statistic for KPCA

Variation in the KPCA model can be found using T2 statistic, which is the sum of normalized

squared scores, computed as follows [31]:

T2 ¼ t1;…; tl½ �Λ�1 t1;…; tl½ �T (35)

where tk is obtained from Eq. (33).

The confidence limit is computed as follows [31]:

T2
l,n,α � l n� 1ð Þ

n� l
Fl,n�l,α (36)

3.1.2. Q statistic for KPCA

In order to compute the Q statistic, the feature vector Φ(X) needs to be reconstructed. This is

done by projecting tk into the feature space using vk as follows [31]:

bΦn Xð Þ ¼
Xn

k¼1

tkvk (37)

The Q statistic in the feature space can now be computed as [31]

Q ¼ Φ Xð Þ � bΦl Xð Þ
			

			
2

(38)

The confidence limit of the Q statistic can then be computed using the following equation [31]:

Qα � gχ2
h (39)

This limit is based on Box’s equation, obtained by fitting the reference distribution obtained

using training data, to a weighted distribution. Parameter g is the weight assigned to account

for the magnitude of the Q statistic, and h represents the degree of freedom. Considering a and

b the estimated mean and variance of the Q statistic, g and h are approximated using g = b/2a

and h = 2a2/b.

3.2. Kernel partial least square (KPLS)

The KPLS methodology works by mapping the data matrices into the feature space and then

applying the nonlinear partial least square algorithm and computing the loading and score

vectors.

The mapped data points are given as

Φ : χ ! F

χ !
ffiffiffiffiffi
λ1

p
ϕ1 Xð Þ,

ffiffiffiffiffi
λ2

p
ϕ2 Xð Þ,…,

ffiffiffiffiffiffi
λn

p
ϕn Xð Þ

� � (40)
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The kernel gram function can be used to map the data into the feature space instead explicitly

using the nonlinear mapping function; this is called the kernel trick. Kernel gram function is

defined as the dot product of the mapping function:

k Xi;Xj

� �

¼ Φ Xið ÞΦ Xj

� �

(41)

As with the KPCA algorithm, the kernel matrix has to be mean centered before applying the

NIPALS algorithm using Eq. (34).

The input score matrix and weights are computed as

t ¼ φ Xð ÞTR

R ¼ ΦTU TTKU
� ��1 (42)

Thus, the score matrix is given as [33]

t ¼ KttZ (43)

where Z ¼ U TTKU
� ��1

.

Now, the relationship between the input and output score matrices can be derived by combing

Eqs. (15), (17), and (18):

t ¼ XXTu (44)

In the feature space, replace X by its image Φ:

t ¼ ΦΦ
Tu (45)

Substituting the kernel gram function, K = ΦΦT, input and output scores are given by

t ¼ Ku

u ¼ Yt
(46)

After every iteration, input kernel (K) and output matrix (Y) are deflated as

ΦΦ
T ¼ Φ� ttTΦ

� �

Φ� ttTΦ
� �T

(47)

ΦΦ
T dot product is replaced by kernel gram function K:

K ¼ K � ttTK � KttT þ ttTKttT

Y ¼ Y � ttTY
(48)

Let Xif gni¼1 be the training data and Xj

� 
n

j¼1
be the testing data, Φ(Xi) is the mapped training

data, and Φ(Xj) is the mapped testing data. Kernel functions for the testing data are given as
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Kt ¼ K X;Xtð Þ ¼
X

n

i¼1

ffiffiffiffiffi

λi

p

ϕi Xð Þ
ffiffiffiffiffi

λi

p

ϕi Xtð Þ ¼ Φ Xð Þ � Φ Xtð Þð Þ ¼ Φ Xð ÞTΦ Xtð Þ

Ktt ¼ K Xt;Xtð Þ ¼
X

n

i¼1

ffiffiffiffiffi

λi

p

ϕi Xtð Þ
ffiffiffiffiffi

λi

p

ϕi Xtð Þ ¼ Φ Xtð Þ � Φ Xtð Þð Þ ¼ Φ Xtð ÞTΦ Xtð Þ

(49)

KPLS algorithm can also be used to predict output matrix Y from input matrix X as

Yt ¼ ΦtB (50)

Φt is mapped testing data in feature space from Xj

� 
n

j¼1
, and B is the regression coefficient

which is given as [34]

B ¼ Φ
TY TTKU

� ��1
TTY (51)

Thus combining Eqs. (50) and (51), we get predicted output quality matrix:

Yt ¼ KtU TTKU
� ��1

TTY (52)

Algorithm 2: Kernel partial least square (KPLS) algorithm

1. Compute Kernel matrix: K.

2. Kernel matrix is mean centered using Eq. (34).

3. For first iteration, initialized score matrix: u = yi.

4. Calculate scores t and u using Eq. (46).

5. Deflate K and Y, using Eq. (48)

6. Score vectors t and u are stored in cumulative matrix T and U

7. Repeat steps 1 to 6 to extract M latent variables.

3.2.1. T2 statistic for KPLS

The T2 statistic for KPLS can be computed as

T2
t ¼ tTΛ�1t (53)

where Λ ¼ n� 1ð Þ�1TTT and the score matrix being orthonormal matrix TTT = I, leading to

Λ ¼ n� 1ð Þ�1I. The score matrix is t ¼ KttZ; hence the T
2 statistic is given by [33]

T2
t ¼ n� 1ð ÞKttZZ

TKtt (54)

The threshold value for T2 statistic is computed using the f-inverse distribution and is given

by [35]
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T2
α ¼ g � finv α;m; hð Þ (55)

where n and m are the total number of observations and variables in the input data matrix X,

respectively, and

g ¼
m n2 � 1
� �

n n�mð Þ

h ¼ n�m

(56)

3.2.2. Q statistic for KPLS

As with the other data-based models, the Q statistic computes the mean square error of the

residue from the KPLS model:

Q ¼ φ�
~
φ

	

	

	

	

	

	

	

	

2

Q ¼ φ
T
φ� 2φ

T ~
φþ

~
φT ~φ

(57)

Substituting the kernel gram functions as the dot product of mapped points:

Q ¼ Ktt � 2KT
t KZtþ tTTTKTt (58)

where Z ¼ U TTKU
� ��1

.

The threshold value for the Q statistic under the significance level of α [36] is given by

Qα ¼ gχ2
α hð Þ (59)

where g and h are given by

g ¼
variance Qð Þ

2 ·mean Qð Þ

h ¼
2 · mean Qð Þð Þ2

variance Qð Þ

(60)

A fault is declared in the system if the Q statistic value is higher than threshold value (Qα) for

new data set.

The following section demonstrates the implementation of the fault detection methods described

above and analyzes the effectiveness of all techniques.

4. Illustrative examples

The effectiveness of the kernel extensions of PCA and PLS for fault detection purposes will be

demonstrated through two illustrative nonlinear examples, using a simulated synthetic data

set and a simulated continuous stirred tank reactor (CSTR).
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4.1. Simulated synthetic data

Synthetic nonlinear data can be simulated through the following model [37]:

x1 ¼ u
2 þ 0:3 sin 2πuð Þ þ ε1

x2 ¼ uþ ε2

x3 ¼ u
3 þ uþ 1þ ε3

(61)

where u is a variable that is defined between�1 and 1 and εi is a variable of independent white

noise distributed uniformly between �0.1 and 0.1. Training and testing data sets of 401

observations each are generated using the model above. The performance of KPCA and KPLS

techniques is illustrated and compared to the conventional PCA and PLS methods for two

different cases. In the first case, the sensor measuring the first variable x1 is assumed to be

faulty with a single fault. In the second case, multiple faults are assumed to occur simulta-

neously in x1, x2, and x3.

Figure 3 shows the generated data.

Case 1

In this case, a single fault of magnitude unity is introduced between observations 200 and 250

in x1 in the testing data set. The Gaussian kernel was chosen to model the nonlinearity in the

process data. The most common fault detection metrics used are the missed detection rate, the

false alarm rate, and the out-of-control average run length (ARL1). The missed detection rate is

Figure 3. Generated data.
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when a fault goes undetected in the faulty region, while the false alarm rate is when an

observation is flagged as a fault in the non-faulty region. The false alarm and missed detection

rates are also commonly referred to as Type I and Type II errors, respectively. ARL1 is the

number of observations, and it takes for a particular technique to flag a fault in faulty region

and is used to assess the speed of a detection. The fault-free and faulty data are shown in

Figures 4 and 5, respectively.

The fault detection (FD) performance of PCA-, KPCA-, PLS-, and KPLS-based Q methods is

shown in Figures 6 and 7 as well as Table 1. The results show that both KPCA and KPLS-

based Q provide a better FD performance than the linear PCA- and PLS-based Q methods and

are able to detect the faults with lower missed detection rates, false alarm rates, and ARL1

values (see Table 1).

Case 2

In this case, a multiple faults of magnitude unity are introduced between observations 200 and

250 in x1, 100 and 150 in x2, and 385 and 401 in x3 in the testing data set (as shown in Figure 8).

The FD performance of the kernel PCA and kernel PLS methods is illustrated and compared to

that of the conventional PCA and PLS methods using the Q statistic. The Q statistic was chosen

for analysis, since it is often better able to detect smaller faults using the residual space and for

simplicity of analysis as well. The fault detection performance of a particular process monitor-

ing technique can be monitored using multiple fault detection metrics.

Figure 4. Fault-free data.
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As can be seen through Figures 9(a) and 10(a) and Table 2, the conventional linear PCA and

PLS techniques are unable to effectively capture the nonlinearity present in the data set, which

leads to entire sets of faults going undetected for both the linear PCA and PLS techniques.

However, as demonstrated in Figures 9(b) and 10(b), the KPCA and KPLS-based Q techniques

are better able to detect the faults with lower missed detection rates, false alarm rates, and

ARL1 values than the linear PCA and PLS methods (as shown in Table 2). These improved

results can be attributed to the fact that the kernel techniques are able to capture the nonlinearity

Figure 5. Faulty data in the presence of single fault in x1.

Figure 6. Monitoring single fault using PCA- and KPCA-based Q methods—case 1.
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Missed detection (%) False alarm (%) ARL1

PLS-based Q statistic 90.1961 13.1429 36

KPLS-based Q statistic 3.9216 0 2

PCA-based Q statistic 100 7.4286 -

KPCA-based Q statistic 27.4510 5.1429 1

Table 1. Summary of missed detection (%), false alarms (%), and ARL1 for case 1.

Figure 7. Monitoring single fault using PLS- and KPLS-based Q methods—case 1.

Figure 8. Faulty data in the presence of multiple faults in x1, x2, and x3.
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in the hyperdimensional feature space, providing better detection especially in this case where

there are multiple faults in the system.

4.2. Simulated CSTR model

In order to effectively assess the performance of the kernel PCA and kernel PLS techniques, it is

also necessary to examine the performance of the techniques using an actual process applica-

tion as well. A continuous stirred tank reactor model can be used to generate nonlinear data,

and the fault detection charts can be applied to test their performance.

Figure 9. Monitoring multiple faults using PCA- and KPCA-based Q methods using simulated synthetic data—case 2.

Figure 10. Monitoring multiple faults using PLS- and KPLS-based Q methods using simulated synthetic data—case 2.

Missed detection (%) False alarm (%) ARL1

PLS-based Q statistic 67.2269 0 58

KPLS-based Q statistic 6.7227 0 1

PCA-based Q statistic 42.8571 0 1

KPCA-based Q statistic 8.4034 2.8369 1

Table 2. Summary of missed detection (%), false alarms (%), and ARL1 for case 2.
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4.2.1. CSTR process description

The dynamic for the CSTR that was utilized for this simulated example is represented as

follows [5]:

∂CA

∂t
¼

F

V
CA0

� CAð Þ � k0e
�E=RTCA

∂T

∂t
¼

F

V
T0 � Tð Þ þ

�ΔHð Þ

ρCP
e�E=RTCA �

q

VρCp

q ¼
aFbþ1

c

Fc þ
aFbc

2ρcCpc

� �
T � Tcinð Þ

(62)

where k0, E, F, and V represent the reaction rate constant, activation energy, flow rates (both

inlet and outlet), and reactor volume, respectively. The concentration of A in the inlet stream

and of B in the exit stream is represented by CA and CB, respectively. The temperatures of the

inlet stream and of the cooling fluid in the jacket are Ti and Tj, respectively. ΔH, U, A, ρ, and Cp

represent the heat of reaction, overall heat transfer coefficient, area through which the heat

transfers to the cooling jacket, density, and heat transfer coefficient of all streams, respectively.

Using the described CSTR model, 1000 observations were generated, which was assumed to be

initially noise-free. Zero-mean Gaussian noise with a signal-to-noise ratio of 20 was used to

contaminate the noise-free process observations, in order to replicate reality. Figure 11 shows

Figure 11. Generated continuously stirred tank reactor (CSTR) data.
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the generated CSTR data. This data set was then split into training and testing data sets, of 500

observations each. Faults of magnitude 3σ were added to the temperature and concentration

process variables in the testing data set, at three different locations: observations 101–150,

251–350, and 401–450. σ is the standard deviation of that particular process variables.

Figures 12 and 13 show the unfaulty and faulty data, respectively. Similar to the previous

example, the performance of kernel PCA and kernel PLS methods is compared to the conven-

tional linear PCA and PLS methods using the Q statistic.

For this example, comparing the two conventional techniques, we can see that the PCA-based

Q statistic is unable to all faults (see Figure 14 (a)), while the PLS-based Q model is able to

better detect the faults (see Figure 15 (a)). However, the kernel PCA and kernel PLS-based Q

techniques are able to provide result charts with lower missed detection rates, false alarm

rates, and ARL1 values than their corresponding conventional techniques (see Figures 14(b)

and 15(b)). These improved results can once again be attributed to the kernel techniques being

able to effectively capture the nonlinearity of the data in the hyperdimensional feature space.

The FD results using the two examples showed that the kernel PLS-based Q provides a relative

performance compared to the kernel PCA Q. This is because kernel PCA is an input space

model and cannot take into consideration outcome measures and most chemical processes or

many of them are usually described by input-output space models.

Figure 12. Fault-free data.
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Figure 13. Faulty data in the presence of multiple faults in temperature and concentration.

Figure 14. Fault detection using PCA- and kernel PCA-based Q methods using CSTR data.

Figure 15. Fault detection using PLS- and kernel PLS-based Q methods using CSTR data.
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5. Conclusion

In this chapter, a nonlinear multivariate statistical techniques are used for fault detection.

Kernel PCA and kernel PLS have been widely used to monitor various nonlinear processes,

such as distillation columns and reactors. Thus, in the current work, both kernel PCA and

kernel PLS methods are used for nonlinear fault detection of chemical process. A commonly

used fault detection index is Q-square statistic, and it is used to detect fault in the system. The

fault detection performance using linear and nonlinear input models (PCA and kernel PCA)

and input-output models (PLS and kernel PLS) is evaluated through two simulated examples,

synthetic data set and continuous stirred tank reactor (CSTR). Missed detection rate, false

alarm rate, and ARL1 are the parameters used to compare the fault detection techniques. The

results of the two case studies showed that the kernel PCA and kernel PLS-based Q provide

improved fault detection performance compared to the conventional PCA- and PLS-based Q

methods.
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