668 research outputs found
Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy
A novel mid-infrared/near-infrared double resonant absorption setup for
studying infrared-inactive vibrational states is presented. A strong
vibrational transition in the mid-infrared region is excited using an idler
beam from a singly resonant continuous-wave optical parametric oscillator, to
populate an intermediate vibrational state. High output power of the optical
parametric oscillator and the strength of the mid-infrared transition result in
efficient population transfer to the intermediate state, which allows measuring
secondary transitions from this state with a high signal-to-noise ratio. A
secondary, near-infrared transition from the intermediate state is probed using
cavity ring down spectroscopy, which provides high sensitivity in this
wavelength region. Due to the narrow linewidths of the excitation sources, the
rovibrational lines of the secondary transition are measured with sub-Doppler
resolution. The setup is used to access a previously unreported symmetric
vibrational state of acetylene, in the
normal mode notation. Single-photon transitions to this state from the
vibrational ground state are forbidden. Ten lines of the newly measured state
are observed and fitted with the linear least-squares method to extract the
band parameters. The vibrational term value was measured to be at 9775.0018(45)
, the rotational parameter was 1.162222 ,
and the quartic centrifugal distortion parameter was 3.998(62), where the numbers in the parenthesis are one-standard
errors in the least significant digits
Origin of calcite in the glacigenic Virttaankangas complex
Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of occurrence of calcite and to identifyits sources. The mineralogy of the glacigenic Virttaankangas complex was studied using material from 21 sediment drill cores. Fine-grained calcite is present in trace amounts (<< 1.4 %) in the glaciofluvial and glaciolacustrine depositional units of the Virttaankangas complex. The topmost littoral sands were practically devoid of calcite. The isotope records of carbon and oxygen, the angular morphology of the grains and the uniform dispersion of calcite in the complex suggest a clastic origin for calcite, with no evidence for in-situ precipitation. In order to constrain the source of calcite, the isotopic composition of carbon and oxygen in five calcite samples was compared to the isotopic data from five carbonate rock erratics and eight crystalline bedrock samples from the region. Based on carbon and oxygen isotope ratios and chemical compositions, the dispersed calcite grains of the Virttaankangas complex appear to have been derived from the Mesoproterozoic Satakunta Formation, some 30 km NW from the Virttaankangas area. In sandstone, calcite is predominantly present as diagenetic cement in grain interspaces, concretions and interlayers. The source of detrital calcite was unexpected, as prior to this study the Satakunta sandstone hasnot been known to contain calcite
Travertine precipitation in the Paleoproterozoic Kuetsjärvi Sedimentary Formation, Pechenga Greenstone Belt, NE Fennoscandian Shield
PES was supported by Väisälä Foundation (Finnish Academy of Science and Letters) and the Finnish Doctoral Program in Geology. ATB was supported by NERC grant NE/G00398X/1. VAM was supported by NFR grant 191530/V30 (projects 331000 and 802795). This is a contribution (paper) # 18 to the ICDP FAR-DEEP project.Peer reviewedPublisher PD
Efficacy of salbutamol via Easyhaler®unaffected by low inspiratory flow
AbstractThe fine particle dose delivered via dry powder inhalers (DPIs) is often affected by the inspiratory flow rate generated during inhalation. This has clinical implications, since the fine particle dose determines the amount of drug reaching the lungs. With Easyhaler®DPI the fine particle dose remains relatively constant over the range of inspiratory flow rates from 30–60 l min−1. The aim of this study was to confirm that clinical efficacy is maintained even at low flow rates by comparing the bronchodilating effect of salbutamol (100 μ g) delivered via Easyhaler®at a target inspiratory flow of 30 l min−1with the same dose of salbutamol via pressurised metered-dose inhaler (pMDI) plus spacer.This was a double-blind, randomized, cross-over study with double-dummy technique. Twenty-one paediatric and adult asthmatic patients completed the study, which was conducted over 2 study days. The main outcome parameter was forced expiratory volume in 1 sec (FEV1). The patients were trained to generate a low peak inspiratory flow rate (PIFR) of 30 l min−1, and the actual PIFR through Easyhaler®was recorded.The average PIFR through Easyhaler®was 28·7 l min−1. The difference in the maximum value of FEV1(FEV1max) between the treatments after drug inhalation was 0·01 l. The mean of FEV1maxwas 2·67 l after pMDI plus spacer compared to 2·69 l after Easyhaler®. Improvements in FEV1were clinically significant. No significant differences between treatments were found.A reasonably low inspiratory flow rate through Easyhaler®produces an equivalent improvement in lung function to a correctly used pMDI plus spacer. Hence, Easyhaler®can be used with confidence in patients who may have difficulty in generating a high inspiratory flow rate, such as children and the elderly
- …