61 research outputs found

    Tactile feedback display with spatial and temporal resolutions.

    Get PDF
    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications

    GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137529/1/smll201603574_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137529/2/smll201603574.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137529/3/smll201603574-sup-0001-S1.pd

    Types and severity of medication errors in Iran; a review of the current literature

    Get PDF
    Medication error (ME) is the most common single preventable cause of adverse drug events which negatively affects patient safety. ME prevalence is a valuable safety indicator in healthcare system. Inadequate studies on ME, shortage of high-quality studies and wide variations in estimations from developing countries including Iran, decreases the reliability of ME evaluations. In order to clarify the status of MEs, we aimed to review current available literature on this subject from Iran. We searched Scopus, Web of Science, PubMed, CINAHL, EBSCOHOST and also Persian databases (IranMedex, and SID) up to October 2012 to find studies on adults and children about prescription, transcription, dispensing, and administration errors. Two authors independently selected and one of them reviewed and extracted data for types, definitions and severity of MEs. The results were classified based on different stages of drug delivery process. Eighteen articles (11 Persian and 7 English) were included in our review. All study designs were cross-sectional and conducted in hospital settings. Nursing staff and students were the most frequent populations under observation (12 studies; 66.7%). Most of studies did not report the overall frequency of MEs aside from ME types. Most of studies (15; 83.3%) reported prevalence of administration errors between 14.3%-70.0%. Prescribing error prevalence ranged from 29.8%-47.8%. The prevalence of dispensing and transcribing errors were from 11.3%-33.6% and 10.0%-51.8% respectively. We did not find any follow up or repeated studies. Only three studies reported findings on severity of MEs. The most reported types of and the highest percentages for any type of ME in Iran were administration errors. Studying ME in Iran is a new area considering the duration and number of publications. Wide ranges of estimations for MEs in different stages may be because of the poor quality of studies with diversity in definitions, methods, and populations. For gaining better insights into ME in Iran, we suggest studying sources, underreporting of, and preventive measures for MEs

    Three‐dimensional Zn O / S i broom‐like nanowire heterostructures as photoelectrochemical anodes for solar energy conversion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102038/1/pssa201329214.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102038/2/pssa201329214-sm-0001-SupFigs.pd

    Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109627/1/pssr201409359.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109627/2/pssr201409359-sup-0001-figuresS1-S10_tableS1.pd

    Semiconductor Nanostructures for Solar Water Splitting and Hydrogen Production: Design, Growth/Fabrication, Characterization, and Device Performance

    No full text
    Solar and seawater are the ultimate energy resources on earth, and together constitute a potential solution to the energy crisis, which at the same time can reduce the carbon emission due to the use of fossil fuels. However, there are challenges in the generation of hydrogen fuel through water splitting using solar energy, such as the cost, and large scale manufacturing of the efficient and durable photoelectrodes. Primary challenge for solar water splitting using photoelectrochemical (PEC) cells is to develop photoelectrodes with sufficient photovoltage to electrolyze water, with maximized photon utilization efficiency, with long lifetime, and with cheap cost. This thesis then focuses on design, characterization and fabrication of novel nanostructured heterojunctions (with focus on nanowire/nanorod array heterostructures) for solar water splitting and hydrogen production. The primary focus of this thesis is to develop such photoelectrodes using low-cost, earth-abundant, non-toxic materials with cheap, facile, scalable fabrication techniques for efficient and durable solar water splitting in neutral solutions. The formation of the nanostructured array heterojunction offers unique combination of desired properties, such as enhanced light absorption, improved charge separation/collection, enlarged reaction surface area, and better electrochemical reaction dynamics. Two different types of nanostructured array heterojunctions present in this thesis including (i) Si/metal-oxides nanowire array heterojunction photoelectrodes (chapters 2-6), and (ii) all-metal-oxides nanowire/nanorod heterostructure photoelectrodes (chapters 7-8). Two different catalysts for hydrogen or oxygen evolution reaction are presented in chapters 9-10. The application of catalyst is to facilitate the gas evolution on the surface of nanostructured heterojunctions to improve the solar hydrogen production efficiency

    Characterization and optimization of CdZnTe Frisch collar gamma-ray spectrometers and their development in an array of detectors

    Get PDF
    Doctor of PhilosophyDepartment of Mechanical and Nuclear EngineeringDouglas S. McGregorCadmium Zinc Telluride (CdZnTe) has been used for many applications, such as medical imaging and astrophysics, since its first demonstration as a room temperature operating gamma-ray detector in 1992. The wide band gap, high effective Z-number and high resistivity of CdZnTe make it a good candidate for use as a room temperature operated detector with good absorption efficiency, while maintaining a low bulk leakage current at high electric fields. Nevertheless, the low mobility lifetime products mu tau of holes in CdZnTe makes detectors position sensitive, unless advanced detector designs are employed. Among those designs is the Frisch collar technology which turns the detector into a single carrier device by negating the degrading effects of hole trapping and low mobility. The superiority of the Frisch collar technology over other methods include its inexpensive associated electronics and straight forward fabrication process. The main objective of this research study is to develop a large volume gamma-ray detector with an array of individual CdZnTe Frisch collar gamma-ray spectrometers while still using a single readout. Several goals were to be accomplished prior to the main objective. One goal is to develop a reliable low cost method to fabricate bulk CdZnTe crystals into Frisch collar detectors. Another goal was to investigate the limitations of crystal geometry and the crystal electrical properties to obtain the best spectroscopic performance from CdZnTe Frisch collar detectors. Still another goal was to study all other external parameters such as the collar length, anode to cathode ratio, the insulator thickness and applied voltage on performance of CdZnTe Frisch collar detectors. The final goal was to construct the CdZnTe Frisch collar devices into an array and to show its feasibility of being used for large volume detector
    corecore