1,202 research outputs found

    Spectroscopy of electronic defect states in Cu(In, Ga)(S, Se)2_2-based heterojunctions and Schottky diodes under damp-heat exposure

    Full text link
    The changes of defect characteristics induced by accelerated lifetime tests on the heterostructure n-ZnO/i-ZnO/CdS/Cu(In, Ga)(S, Se)2_2/Mo relevant for photovoltaic energy conversion are investigated. We subject heterojunction and Schottky devices to extended damp heat exposure at 85∘^{\circ}C ambient temperature and 85% relative humidity for various time periods. In order to understand the origin of the pronounced changes of the devices, we apply current--voltage and capacitance--voltage measurements, admittance spectroscopy, and deep-level transient spectroscopy. The fill factor and open-circuit voltage of test devices are reduced after prolonged damp heat treatment, leading to a reduced energy conversion efficiency. We observe the presence of defect states in the vicinity of the CdS/chalcopyrite interface. Their activation energy increases due to damp heat exposure, indicating a reduced band bending at the Cu(In, Ga)(S, Se)2_2 surface. The Fermi-level pinning at the buffer/chalcopyrite interface, maintaining a high band bending in as-grown cells, is lifted due to the damp-heat exposure. We also observe changes in the bulk defect spectra due to the damp-heat treatment.Comment: 4 pages, 5 figure

    Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    Get PDF
    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(<i>N</i>-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects

    Two-phonon 1- state in 112Sn observed in resonant photon scattering

    Full text link
    Results of a photon scattering experiment on 112Sn using bremsstrahlung with an endpoint energy of E_0 = 3.8 MeV are reported. A J = 1 state at E_x = 3434(1) keV has been excited. Its decay width into the ground state amounts to Gamma_0 = 151(17) meV, making it a candidate for a [2+ x 3-]1- two-phonon state. The results for 112Sn are compared with quasiparticle-phonon model calculations as well as the systematics of the lowest-lying 1- states established in other even-mass tin isotopes. Contrary to findings in the heavier stable even-mass Sn isotopes, no 2+ states between 2 and 3.5 MeV excitation energy have been detected in the present experiment.Comment: 10 pages, including 2 figures, Phys. Rev. C, in pres

    Spectroscopic investigation of the deeply buried Cu In,Ga S,Se 2 Mo interface in thin film solar cells

    Get PDF
    The Cu In,Ga S,Se 2 Mo interface in thin film solar cells has been investigated by surface sensitive photoelectron spectroscopy, bulk sensitive X ray emission spectroscopy, and atomic force microscopy. It is possible to access this deeply buried interface by using a suitable lift off technique, which allows to investigate the back side of the absorber layer as well as the front side of the Mo back contact. We find a layer of Mo S,Se 2 on the surface of the Mo back contact and a copper poor stoichiometry at the back side of the Cu In,Ga S,Se 2 absorber. Furthermore, we observe that the Na content at the Cu In,Ga S,Se 2 Mo interface as well as at the inner grain boundaries in the back contact region is significantly lower than at the absorber front surfac

    Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs) following inhalation of UfCPs (24 h, 172 ÎŒg·m<sup>-3</sup>), to assess whether compromised animals (SHR) exhibit a different response pattern compared to the previously studied healthy rats (WKY).</p> <p>Methods</p> <p>Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP) and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1), blood coagulation (tissue factor, plasminogen activator inhibitor-1), and endothelial function (endothelin-1, and endothelin receptors A and B) were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF).</p> <p>Results</p> <p>Increased BP and heart rate (HR) by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary) and blood (systemic) were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p < 0.05) with endothelin 1 being the maximally induced factor (6-fold; p < 0.05) on the third recovery day in the lungs of UfCPs exposed SHRs; while all of these factors – except hemeoxygenase-1 – were not affected in cardiac tissues. Strikingly, the UfCPs-mediated altered BP is paralleled by the induction of renin-angiotensin system in plasma.</p> <p>Conclusion</p> <p>Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction, stimulation of blood coagulation factors, and inhibition of fibrinolysis. Thus, UfCPs may cause cardiovascular and pulmonary impairment, in the absence of detectable pulmonary inflammation, in individuals suffering from preexisting cardiovascular diseases.</p

    Integration of Acoustic Neutrino Detection Methods into ANTARES

    Get PDF
    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.Comment: 6 pages, 5 figures, to appear in the proceedings of the International ARENA Workshop, May 28-30th, 2006, University of Northumbri

    The SM and NLO multileg working group: Summary report

    Get PDF
    This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200
    • 

    corecore