112 research outputs found

    BiblioBouts: A Scalable Online Social Game for the Development of Academic Research Skills

    Get PDF
    Researchers at the School of Information of the University of Michigan are designing, developing, and evaluating BiblioBouts, an online game that helps students learn academic research skills. Players practice using online library research tools while they work on an in-class assignment and produce a high-quality bibliography, at the same time as they are competing against each other to win the game! While librarians are experts at helping students who want to learn about academic research, most students are reluctant participants because they want just-in-time personal assistance that is tailored to their unique information needs, and faculty are reluctant to cede class time. The BiblioBouts project enlists games to teach undergraduate students information literacy skills and concepts in the classroom. Social gaming reinforces principles of good learning, including getting results by trial and error, self-discovery, following hunches and reinforcement through repetition. BiblioBouts also incorporates collaborative problem solving and participation in a community of learning. The project aims to explore how games can be utilized to achieve information literacy goals and to yield open-source game software that libraries could use immediately to enhance their information literacy programs. The LOEX presentation will incorporate a live interactive demo of the game, as well as videos demonstrating gameplay. We will discuss challenges in situating the game into the classroom and integrating it into existing course syllabi. The presentation will describe how we have adapted the game in response to feedback from students and instructors during the pilot process

    Porphyromonas gingivalis Mediates Inflammasome Repression in Polymicrobial Cultures through a Novel Mechanism Involving Reduced Endocytosis

    Get PDF
    The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis

    Reining in uncontrolled inflammasome with PKA

    Get PDF
    During the course of infection, the detection of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) by pattern-recognition receptors (PRRs) can lead to inflammasome formation, with subsequent activation of ccaspase-1, secretion of interleukin 1β (IL-1β) and IL-18, and cell death via pyroptosis. However, this process must be tightly controlled, as uncontrolled inflammasome activation can lead to a plethora of disease outcomes. In this issue, Mortimer et al. describe how phosphorylation of the PRR NLRP3 by the kinase PKA, after inflammasome activation, attenuates the inflammasome to halt the inflammatory response3. Gain-of-function mutations in the gene encoding NLRP3 cause a family of related autoimmune disorders called ‘CAPS’ (‘cryopyrin-associated periodic syndrome’) that result in aberrant activation of the NLRP3 inflammasome with uncontrolled secretion of IL-1β and IL-18. The authors also provide insight into why some of the NLRP3 mutations that induce CAPS drive unregulated activation of the inflammasome

    Building the Games Students Want to Play: BiblioBouts Project Interim Report #2

    Full text link
    The University of Michigan’s School of Information and its partner, the Center for History and New Media at George Mason University, are undertaking the 3-year BiblioBouts Project (October 1, 2008 to September 30, 2011) to support the design, development, testing, and evaluation of a computer game to teach incoming undergraduate students information literacy skills and concepts. This second interim report describes the project team’s 5-month progress achieving 2 of the project’s 4 objectives, designing the BiblioBouts game and engaging in evaluation activities. It also enumerates major tasks that will occupy the team for the next 6 months. Appendixes A and B describe the game’s design and include pedagogical goals and how the game scores players.Institute of Museum and Library Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64293/1/bbInterimReportToIMLS02.pd

    The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB

    Get PDF
    Several members of the NLR family of sensors activate innate immunity. In contrast, we found here that NLRC3 inhibited Toll-like receptor (TLR)-dependent activation of the transcription factor NF-κB by interacting with the TLR signaling adaptor TRAF6 to attenuate Lys63 (K63)-linked ubiquitination of TRAF6 and activation of NF-κB. We used bioinformatics to predict interactions between NLR and TRAF proteins, including interactions of TRAF with NLRC3. In vivo, macrophage expression of Nlrc3 mRNA was diminished by the administration of lipopolysaccharide (LPS) but was restored when cellular activation subsided. To assess biologic relevance, we generated Nlrc3−/− mice. LPS-treated Nlrc3−/− macrophages had more K63-ubiquitinated TRAF6, nuclear NF-κB and proinflammatory cytokines. Finally, LPS-treated Nlrc3−/− mice had more signs of inflammation. Thus, signaling via NLRC3 and TLR constitutes a negative feedback loop. Furthermore, prevalent NLR-TRAF interactions suggest the formation of a ‘TRAFasome’ complex

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy

    Get PDF
    The mitochondrial protein MAVS (also known as IPS-1, VISA, CARDIF) interacts with RLR (RIG-I-like receptors) to induce type 1 interferon (IFN-I) during viral infection. NLRX1 is a mitochondrial NLR (nucleotide-binding, leucine-rich repeats containing) protein that attenuates MAVS-RLR signaling. Using Nlrx1−/− cells we confirmed NLRX1 attenuated IFN-I production, but additionally promoted autophagy during viral infection. This dual function of NLRX1 paralleled the previously described functions of the autophagy-related proteins Atg5-Atg12, but NLRX1 did not associate with Atg5-Atg12. High throughput quantitative mass spectrometry and endogenous protein-protein interaction revealed an NLRX1-interacting partner, mitochondrial Tu translation elongation factor (TUFM). TUFM interacted with Atg5-Atg12 and Atg16L1, and has similar functions as NLRX1 by inhibiting RLR-induced IFN-I but promoting autophagy. In the absence of NLRX1, increased IFN-I and decreased autophagy provide an advantage for host defense against vesicular stomatitis virus. This study establishes a link between an NLR protein and the viral-induced autophagic machinery via an intermediary partner, TUFM

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore