24 research outputs found

    Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus

    Get PDF
    A stressful event results in secretion of glucocorticoid hormones, which bind to mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) in the hippocampus to regulate cognitive and affective responses to the challenge. MRs are already highly occupied by low glucocorticoid levels under baseline conditions, whereas GRs only become substantially occupied by stress- or circadian-driven glucocorticoid levels. Currently, however, the binding of MRs and GRs to glucocorticoid-responsive elements (GREs) within hippocampal glucocorticoid target genes under such physiological conditions in vivo is unknown. We found that forced swim (FS) stress evoked increased hippocampal RNA expression levels of the glucocorticoid-responsive genes FK506-binding protein 5 (Fkbp5), Period 1 (Per1), and serum- and glucocorticoid-inducible kinase 1 (Sgk1). Chromatin immunoprecipitation (ChIP) analysis showed that this stressor caused substantial gene-dependent increases in GR binding and surprisingly, also MR binding to GREs within these genes. Different acute challenges, including novelty, restraint, and FS stress, produced distinct glucocorticoid responses but resulted in largely similar MR and GR binding to GREs. Sequential and tandem ChIP analyses showed that, after FS stress, MRs and GRs bind concomitantly to the same GRE sites within Fkbp5 and Per1 but not Sgk1. Thus, after stress, MRs and GRs seem to bind to GREs as homo- and/or heterodimers in a gene-dependent manner. MR binding to GREs at baseline seems to be restricted, whereas after stress, GR binding may facilitate cobinding of MR. This study reveals that the interaction of MRs and GRs with GREs within the genome constitutes an additional level of complexity in hippocampal glucocorticoid action beyond expectancies based on ligand–receptor interactions

    Distinct epigenetic and gene expression changes in rat hippocampal neurons after Morris water maze training

    Get PDF
    Gene transcription and translation in the hippocampus is of critical importance in hippocampus-dependent memory formation, including during Morris water maze (MWM) learning. Previous work using gene deletion models has shown that the immediate-early genes (IEGs) c-Fos, Egr-1 and Arc are crucial for such learning. Recently, we reported that induction of IEGs in sparse dentate gyrus neurons requires ERK MAPK signaling and downstream formation of a distinct epigenetic histone mark (i.e. phospho-acetylated histone H3). Until now, this signaling, epigenetic and gene transcriptional pathway has not been comprehensively studied in the MWM model. Therefore, we conducted a detailed study of the phosphorylation of ERK1/2 and serine10 in histone H3 (H3S10p) and induction of IEGs in the hippocampus of MWM trained rats and matched controls. MWM training evoked consecutive waves of ERK1/2 phosphorylation and H3S10 phosphorylation, as well as c-Fos, Egr-1 and Arc induction in sparse hippocampal neurons. The observed effects were most pronounced in the dentate gyrus. A positive correlation was found between the average latency to find the platform and the number of H3S10p-positive dentate gyrus neurons. Furthermore, chromatin immuno-precipitation (ChIP) revealed a significantly increased association of phospho-acetylated histone H3 (H3K9ac-S10p) with the gene promoters of c-Fos and Egr-1, but not Arc, after MWM exposure compared with controls. Surprisingly, however, we found very little difference between IEG responses (regarding both protein and mRNA) in MWM-trained rats compared with matched swim controls. We conclude that exposure to the water maze evokes ERK MAPK activation, distinct epigenetic changes and IEG induction predominantly in sparse dentate gyrus neurons. It appears, however, that a specific role for IEGs in the learning aspect of MWM training may become apparent in downstream AP-1- and Egr-1-regulated (second wave) genes and Arc-dependent effector mechanisms

    Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors

    Get PDF
    Glucocorticoid hormones (GCs) are of critical importance for maintaining brain health, but their involvement in mental disorders is poorly understood. Here the authors show how GCs act through hippocampal mineralocorticoid and glucocorticoid receptors to impact the gene regulatory programs underpinning neuronal plasticity, ciliogenesis and behavioral adaptation

    Key Learning Outcomes for Clinical Pharmacology and Therapeutics Education in Europe: A Modified Delphi Study.

    Get PDF
    Harmonizing clinical pharmacology and therapeutics (CPT) education in Europe is necessary to ensure that the prescribing competency of future doctors is of a uniform high standard. As there are currently no uniform requirements, our aim was to achieve consensus on key learning outcomes for undergraduate CPT education in Europe. We used a modified Delphi method consisting of three questionnaire rounds and a panel meeting. A total of 129 experts from 27 European countries were asked to rate 307 learning outcomes. In all, 92 experts (71%) completed all three questionnaire rounds, and 33 experts (26%) attended the meeting. 232 learning outcomes from the original list, 15 newly suggested and 5 rephrased outcomes were included. These 252 learning outcomes should be included in undergraduate CPT curricula to ensure that European graduates are able to prescribe safely and effectively. We provide a blueprint of a European core curriculum describing when and how the learning outcomes might be acquired

    Insights into isoform-specific mineralocorticoid receptor action in the hippocampus

    No full text
    The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic-pituitary-adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.</p
    corecore