5 research outputs found

    Antimicrobial activity of Pantanal macrophytes against multidrug resistant bacteria shows potential for improving nature-based solutions

    No full text
    The presence of macrophytes in constructed wetlands (CW) applied within the concept of nature-based solution (NBS) is crucial. Besides their role in the phytoremediation of pollutants, the cultivated plants, if properly selected, can also produce a range of bioactive compounds, including those with potential inhibitory effects against pathogenic bacteria. Bioactive compounds, such as flavonoids and ellagitannins, known for their remarkable antimicrobial properties, offer a sustainable solution to the global challenge of antibiotic resistance. In this study, we investigated macrophyte species adapted to the water variations in the Pantanal region (flood and dry seasons), focusing on those with both antimicrobial and ornamental potential, that could improve the ability of a CW system to treat greywater. Seven different macrophyte species were collected, cultivated, and evaluated for their antimicrobial activity (AA) against five standard bacterial strains and five multidrug-resistant clinical bacterial strains. Extracts from the leaf, stem, and root of Polygonum acuminatum showed the best AA against clinical multidrug-resistant strains of Staphylococcus aureus, Enterococcus faecium, and Escherichia coli, with minimum inhibitory concentration (MIC) values ranging from 78.13 to 312.5 µg.mL−1. Furthermore, the leaves of Ludwigia lagunae and P. acuminatum also showed considerable AA against standard strains of Enterococcus faecalis (MIC = 19.5 and 39.06 µg.mL−1, respectively) and Pseudomonas aeruginosa (MIC = 156.25 µg.mL−1 for both). High-Performance Liquid Chromatography with Ultraviolet and Mass Spectrometry analysis of these extracts identified important bioactive compounds, including flavonoids (quercetin 3-rhamnoside, hydropiperoside, quercetin 3-O-rutinoside, quercetin, myricetin 3-O-rhamnoside, kaempferol 3-O-rhamnoside, formononetin, and calycosin) and ellagitannins (3,3′4-tri-O-methylelagic acid, galloys-HHDP-glucose, and ellagic acid), along with other bioactive compounds. These results indicate that P. acuminatum and L. lagunae hold potential for application in CW owing to their antimicrobial property, local adaptability, and ornamental appeal

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    1996 Annual Selected Bibliography

    No full text
    corecore