8 research outputs found

    Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    Get PDF
    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2γR_{2\gamma}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20°\approx 20\degree to 80°80\degree. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12°12\degree, as well as symmetric M{\o}ller/Bhabha calorimeters at 1.29°1.29\degree. A total integrated luminosity of 4.5~fb−1^{-1} was collected. In the extraction of R2γR_{2\gamma}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2γR_{2\gamma}, presented here for a wide range of virtual photon polarization 0.456<ϵ<0.9780.456<\epsilon<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table

    Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic ([→ over e],e′p) Electron Scattering from Deuterium

    No full text
    We report the measurement of the beam-vector and tensor asymmetries A[subscript ed][superscript V] and A[subscript d][superscript T] in quasielastic ([→ over e],e′p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500  MeV/c. Data were collected simultaneously over a momentum transfer range 0.1<Q[superscript 2]<0.5  (GeV/c)[superscript 2] with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry A[subscript ed][superscript V] is found to be directly sensitive to the D-wave component of the deuteron and has a zero crossing at a missing momentum of about 320  MeV/c, as predicted. The tensor asymmetry A[subscript d][superscript T] at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models

    Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    No full text
    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2γ\it R_{2 \gamma}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈\approx 20° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12°, as well as symmetric Møller/Bhabha calorimeters at 1:29°. A total integrated luminosity of 4.5fb−14.5 fb^{-1} was collected. In the extraction of R2γ\it R_{2\gamma}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2γ\it R_{2\gamma}, presented here for a wide range of virtual photon polarization 0:456 < ϵ\epsilon< 0:978, are smaller than hadronic two-photon exchange calculations predict, but are consistent with phenomenological models
    corecore