2,284 research outputs found

    Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions

    Get PDF
    The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO₂, ZnO, γ-Al2O₃, CeO₂ is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO₂ and γ-Al₂O₃. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature

    Transferring elements of a density matrix

    Full text link
    We study restrictions imposed by quantum mechanics on the process of matrix elements transfer. This problem is at the core of quantum measurements and state transfer. Given two systems \A and \B with initial density matrices λ\lambda and rr, respectively, we consider interactions that lead to transferring certain matrix elements of unknown λ\lambda into those of the final state r~{\widetilde r} of \B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of \A. If one diagonal matrix element is transferred, r~aa=λaa{\widetilde r}_{aa}=\lambda_{aa}, the memory on each non-diagonal element λa≠b\lambda_{a\not=b} is completely eliminated from the final density operator of \A. Consider the following three quantities \Re \la_{a\not =b}, \Im \la_{a\not =b} and \la_{aa}-\la_{bb} (the real and imaginary part of a non-diagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., \Re\tir_{a\not = b}=\Re\la_{a\not = b}, erases the memory on two others from the final state of \A. Generalization of these set-ups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations which account for local aspects of the accuracy-disturbance trade-off in quantum measurements.Comment: 9 pages, 2 table

    ‘Standing by’: disability hate crime and the police in England

    Get PDF
    This article discusses the Don’t Stand By: Hate Crime Research Report (DSB) (Mencap, 2011), which documents failings in policing practices related to reporting and responding to disability hate crime. Such failings, we argue, constitute not so much direct discrimination but acts of ‘normalcy’. Normalcy is the process whereby taken for granted ideas about what is normal become naturalised; in this respect being non-disabled is seen as normal. Acts of normalcy, whilst less tangible, are by no means less violent or harmful than acts of ‘real discrimination’ or ‘real violence’ (Goodley and Rumswick-Cole, 2011). Systemic and cultural normalcy within the police is not new, as can be seen in the case of Stephen Lawrence

    Early diagenetic vivianite [Fe-3(PO4)(2) center dot 8H(2)O] in a contaminated freshwater sediment and insights into zinc uptake: a mu-EXAFS, mu-XANES and Raman study

    Get PDF
    The sediments in the Salford Quays, a heavily-modified urban water body, contain high levels of organic matter, Fe, Zn and nutrients as a result of past contaminant inputs. Vivianite [Fe3(PO4)2 · 8H2O] has been observed to have precipitated within these sediments during early diagenesis as a result of the release of Fe and P to porewaters. These mineral grains are small (<100 μm) and micron-scale analysis techniques (SEM, electron microprobe, μ-EXAFS, μ-XANES and Raman) have been applied in this study to obtain information upon the structure of this vivianite and the nature of Zn uptake in the mineral. Petrographic observations, and elemental, X-ray diffraction and Raman spectroscopic analysis confirms the presence of vivianite. EXAFS model fitting of the FeK-edge spectra for individual vivianite grains produces Fe–O and Fe–P co-ordination numbers and bond lengths consistent with previous structural studies of vivianite (4O atoms at 1.99–2.05 Å; 2P atoms at 3.17–3.25 Å). One analysed grain displays evidence of a significant Fe3+ component, which is interpreted to have resulted from oxidation during sample handling and/or analysis. EXAFS modelling of the Zn K-edge data, together with linear combination XANES fitting of model compounds, indicates that Zn may be incorporated into the crystal structure of vivianite (4O atoms at 1.97 Å; 2P atoms at 3.17 Å). Low levels of Zn sulphate or Zn-sorbed goethite are also indicated from linear combination XANES fitting and to a limited extent, the EXAFS fitting, the origin of which may either be an oxidation artifact or the inclusion of Zn sulphate into the vivianite grains during precipitation. This study confirms that early diagenetic vivianite may act as a sink for Zn, and potentially other contaminants (e.g. As) during its formation and, therefore, forms an important component of metal cycling in contaminated sediments and waters. Furthermore, for the case of Zn, the EXAFS fits for Zn phosphate suggest this uptake is structural and not via surface adsorption

    Service user suicides and coroner's inquests

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Criminal Justice Matters on 22nd May 2013, available online: DOI:10.1080/09627251.2013.805375The expansion of victimology in the 1980s produced a more nuanced understanding of victims and victimisation. Yet responses of government, criminal justice agencies, media and general public to victims are predictably and predominantly focused on victims of ‘conventional crime’. We challenge this perspective, thus widening the victimological lens. We discuss the impact of self-inflicted deaths and subsequent coronial inquests on practitioners working on behalf of the state

    Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro.

    Get PDF
    Cardiac progenitor cells (CPCs) have rapidly advanced to clinical trials, yet little is known regarding their interaction with the microenvironment. Signaling cues present in the microenvironment change with development and disease. This work aims to assess the influence of two distinct signaling moieties on CPCs: cyclic biaxial strain and extracellular matrix. We evaluate four endpoints for improving CPC therapy: paracrine signaling, proliferation, connexin43 expression, and alignment. Vascular endothelial growth factor A (about 900 pg/mL) was secreted by CPCs cultured on fibronectin and collagen I. The application of mechanical strain increased vascular endothelial growth factor A secretion 2-4-fold for CPCs cultured on poly-L-lysine, laminin, or a naturally derived cardiac extracellular matrix. CPC proliferation was at least 25% higher on fibronectin than that on other matrices, especially for lower strain magnitudes. At 5% strain, connexin43 expression was highest on fibronectin. With increasing strain magnitude, connexin43 expression decreased by as much as 60% in CPCs cultured on collagen I and a naturally derived cardiac extracellular matrix. Cyclic mechanical strain induced the strongest CPC alignment when cultured on fibronectin or collagen I. This study demonstrates that culturing CPCs on fibronectin with 5% strain magnitude is optimal for their vascular endothelial growth factor A secretion, proliferation, connexin43 expression, and alignment

    Fitting the Light Curve of 1I/`Oumuamua with a Nonprincipal Axis Rotational Model and Outgassing Torques

    Full text link
    In this paper, we investigate the nonprincipal axis (NPA) rotational state of 1I/`Oumuamua -- the first interstellar object discovered traversing the inner Solar System -- from its photometric light curve. Building upon Mashchenko (2019), we develop a model which incorporates NPA rotation and {Sun-induced, time-varying} outgassing torques to generate synthetic light curves of the object. The model neglects tidal forces, which are negligible compared to outgassing torques over the distances that `Oumuamua was observed. We implement an optimization scheme that incorporates the NPA rotation model to calculate the initial rotation state of the object. We find that an NPA rotation state with an average period of ⟨P⟩≃7.34\langle P \rangle\simeq7.34 hr best reproduces the photometric data. The discrepancy between this period and previous estimates is due to continuous period modulation induced by outgassing torques in the rotational model, {as well as different periods being used}. The best fit to the October 2017 data does not reproduce the November 2017 data (although the later measurements are too sparse to fit). The light curve is consistent with no secular evolution of the angular momentum, somewhat in tension with the empirical correlations between nuclear spin-up and cometary outgassing. The complex rotation of `Oumuamua may be {the result of primordial rotation about the smallest principal axis} if (i) the object experienced hypervolatile outgassing and (ii) our idealized outgassing model is accurate.Comment: 22 pages, 8 figures, 1 animation. Accepted to the Planetary Science Journal. The animation can be found on YouTube (https://youtu.be/f5YEAMTvIeo) and in the online publication by PSJ (when available

    Assessing Potential Contributions from Outgassing and Tidal Effects on the Evolving Rotational State of 1I/'Oumuamua

    Full text link
    In this paper, we attempt to interpret the photometric light curve of 1I/`Oumuamua, the first interstellar object discovered traversing the inner Solar System. We compare photometric data with synthetic light curves of ellipsoidal bodies for a range of rotational states and observing geometries. While previous work reported an increase in the periodicity of the object during October, we find a Δp≃0.21\Delta p\simeq0.21 hour decrease in the spin period between October and November. We investigate potential contributions to the evolving spin period from both outgassing and tidal effects using a general formalism which may be applied to any elongated object. While sublimation is a stronger effect, tidal deformation could change the moment of inertia and subsequent spin period based on the bulk material properties. We present an open source software which simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosites and sizes (SAMUS\texttt{SAMUS}). These numerical simulations, when applied to `Oumuamua, demonstrate that it may have experienced significant tidal deformation in the presence of sublimation. However, synthetic observations which incorporate tidal effects demonstrate that little deformation is necessary to match the composite light curve. We find that a dynamic viscosity of μ≥109\mu\geq10^9 g cm−1^{-1} s−1^{-1}, corresponding to a 0.1\% change in moment of inertia, best reproduces the photometric data. It is feasible that tidal deformation contributed to the shorter timescale spin-down in October, while outgassing induced the secular spin-up.Comment: 30 pages, 24 figures, 5 tables. Submitted to AAS Planetary Science Journal. Comments very welcome. Publicly available software at https://github.com/astertaylor/Oumuamu
    • …
    corecore