3,538 research outputs found

    Electroporation of Craniofacial Mesenchyme

    Get PDF
    Electroporation is an efficient method of delivering DNA and other charged macromolecules into tissues at precise time points and in precise locations. For example, electroporation has been used with great success to study neural and retinal development in Xenopus, chicken and mouse 1-10. However, it is important to note that in all of these studies, investigators were not targeting soft tissues. Because we are interested in craniofacial development, we adapted a method to target facial mesenchyme

    Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: implications for acid mine drainage treatment and neutralization

    Get PDF
    The iron-reducing bacterium Acidiphilium cryputum JF-5 and a sulfate reducing bacterium (SRB) collected and purified from the mine drainage of a copper mine in the northwest of Sichuan Province, China, were used to biologically synthesize nano-sized FeS-coated limestone to remove As(V) from solution. The adsorption efficiency of As(V) is improved from 6.64 μg/g with limestone alone to 187 μg/g with the FeS coated limestone in both batch and column experiments. The hydraulic conductivity of the columns are also improved by the presence of the nano-sized FeS coatings, but the solution neutralization performance of the limestone can be reduced by passivation by gypsum and Fe(III) precipitates. Calculations for FeS-coated limestone dissolution experiments show that the process can be described as nCa.sol=At1/2-nCa,gyp. The results suggest that FeS-coated limestone may be an effective medium for remediating As(V)-bearing solutions such as acid mine drainage in systems such as Permeable Reactive Barriers

    Receptive Field Block Net for Accurate and Fast Object Detection

    Full text link
    Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representations but suffering from high computational costs. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate detector by strengthening lightweight features using a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness. We further assemble RFB to the top of SSD, constructing the RFB Net detector. To evaluate its effectiveness, experiments are conducted on two major benchmarks and the results show that RFB Net is able to reach the performance of advanced very deep detectors while keeping the real-time speed. Code is available at https://github.com/ruinmessi/RFBNet.Comment: Accepted by ECCV 201

    GIMO: Gaze-Informed Human Motion Prediction in Context

    Full text link
    Predicting human motion is critical for assistive robots and AR/VR applications, where the interaction with humans needs to be safe and comfortable. Meanwhile, an accurate prediction depends on understanding both the scene context and human intentions. Even though many works study scene-aware human motion prediction, the latter is largely underexplored due to the lack of ego-centric views that disclose human intent and the limited diversity in motion and scenes. To reduce the gap, we propose a large-scale human motion dataset that delivers high-quality body pose sequences, scene scans, as well as ego-centric views with eye gaze that serves as a surrogate for inferring human intent. By employing inertial sensors for motion capture, our data collection is not tied to specific scenes, which further boosts the motion dynamics observed from our subjects. We perform an extensive study of the benefits of leveraging eye gaze for ego-centric human motion prediction with various state-of-the-art architectures. Moreover, to realize the full potential of gaze, we propose a novel network architecture that enables bidirectional communication between the gaze and motion branches. Our network achieves the top performance in human motion prediction on the proposed dataset, thanks to the intent information from the gaze and the denoised gaze feature modulated by the motion. The proposed dataset and our network implementation will be publicly available

    Guidelines for Material Design in Semitransparent Organic Solar Cells

    Full text link
    Organic solar cells (OSCs) are uniquely suited for semitransparent applications due to their adjustable absorption spectrum. However, most high-performance semitransparent cells reported to date are based on materials that have shown high power conversion efficiency for opaque devices. We therefore present a model to assess the optimum efficiency and transparency for a specific donor and acceptor band gap. The absorption characteristics of both donor and acceptor are modeled with spectral data of typical absorber materials from the literature which are adjusted to achieve the desired band gap value. The results show three distinct regions of high light utilization efficiency if the photopic curve is employed as a weighting function (corresponding to window applications), and a broad maximum for the plant action spectrum as a weighting function (corresponding to greenhouse applications). When comparing these findings to reported experimental values, it is evident that the band gaps of the materials used for the experimental studies do not correspond to the maxima identified by our simulation model. The analysis of the energy levels of molecules recorded in the literature confirms that all band gaps and therefore all LUE maxima are chemically feasible so that the performance of semitransparent OSCs can be further improved by designing materials with optimized absorption spectra.Comment: 20 pages and 10 figure in the main manuscript, aditionally 6 pages and 4 figures in the supporting informatio

    Apoptosome dysfunction in human cancer

    Full text link
    Apoptosis is a cell suicide mechanism that enables organisms to control cell number and eliminate cells that threaten survival. The apoptotic cascade can be triggered through two major pathways. Extracellular signals such as members of the tumor necrosis factor (TNF) family can activate the receptor-mediated extrinsic pathway. Alternatively, stress signals such as DNA damage, hypoxia, and loss of survival signals may trigger the mitochondrial intrinsic pathway. In the latter, mitochondrial damage results in cytochrome c release and formation of the apoptosome, a multimeric protein complex containing Apaf-1, cytochrome c , and caspase-9. Once bound to the apoptosome, caspase-9 is activated, and subsequently triggers a cascade of effector caspase activation and proteolysis, leading to apoptotic cell death. Recent efforts have led to the identification of multiple factors that modulate apoptosome formation and function. Alterations in the expression and/or function of these factors may contribute to the pathogenesis of cancer and resistance of tumor cells to chemotherapy or radiation. In this review we discuss how disruption of normal apoptosome formation and function may lead or contribute to tumor development and progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44410/1/10495_2005_Article_5384695.pd

    Cognitive Impairment Precedes and Predicts Functional Impairment in Mild Alzheimer’s Disease

    Get PDF
    Abstract Background: The temporal relationship of cognitive deficit and functional impairment in Alzheimer’s disease (AD) is not well characterized. Recent analyses suggest cognitive decline predicts subsequent functional decline throughout AD progression. Objective: To better understand the relationship between cognitive and functional decline in mild AD using autoregressive cross-lagged (ARCL) panel analyses in several clinical trials. Methods: Data included placebo patients with mild AD pooled from two multicenter, double-blind, Phase 3 solanezumab (EXPEDITION/2) or semagacestat (IDENTITY/2) studies, and from AD patients participating in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cognitive and functional outcomes were assessed using AD Assessment Scale-Cognitive subscale (ADAS-Cog), AD Cooperative Study-Activities of Daily Living instrumental subscale (ADCS-iADL), or Functional Activities Questionnaire (FAQ), respectively. ARCL panel analyses evaluated relationships between cognitive and functional impairment over time. Results: In EXPEDITION, ARCL panel analyses demonstrated cognitive scores significantly predicted future functional impairment at 5 of 6 time points, while functional scores predicted subsequent cognitive scores in only 1 of 6 time points. Data from IDENTITY and ADNI programs yielded consistent results whereby cognition predicted subsequent function, but not vice-versa. Conclusions: Analyses from three databases indicated cognitive decline precedes and predicts subsequent functional decline in mild AD dementia, consistent with previously proposed hypotheses, and corroborate recent publications using similar methodologies. Cognitive impairment may be used as a predictor of future functional impairment in mild AD dementia and can be considered a critical target for prevention strategies to limit future functional decline in the dementia process
    • …
    corecore