963 research outputs found

    Middle-class, white-collar offenders: needy women - greedy men?

    Get PDF
    Little research on white-collar offenders has focused on gender. This study focuses on previously neglected gendered dimensions of white-collar criminality by examining both motivations for crime and reactions to adjudication among men and women convicted of white-collar crimes. Data for this study were collected via in-depth interviews with 35 male and female white-collar offenders from the Eastern TennesseeFederal District. Information was also gathered from the offenders’ presentence investigation reports. The analysis suggests that gender differences among white-collaroffenders are not as stark as presented in previous research. Both men and women found to be equally represented among several categories of motivational accounts including, financial interest, need, psychological problems, and revenge. Gender Similarities were also found in the coping strategies used to adapt to imprisonment and in reactions to community supervision. By focusing on the experiences of both men and women convicted of white-collar crimes insight can be gained that may inform future research

    Service-Learning: Everyone Deserves to Play!

    Get PDF
    Children learn from interactions with peers and through independent play. Children with significant disabilities often struggle to engage in play and require the use of adapted toys. The purpose of this research was to explore occupational therapy (OT) and occupational therapy assistant (OTA) student perceptions of a service-learning activity of adapting toys to be switch accessible. A total of 50 toys were switch adapted by the students and distributed to the local community. Student perception of interest included overall learning, views on service-learning, and the importance of volunteering in the community. Survey results indicate that most students believed this project helped them to become more aware of an individual’s needs and how to make a difference in their community. The OT and OTA students also reported this activity reinforced problem-solving skills and classroom coursework. Learning how to adapt battery operated items is an important skill for OT and OTA students to develop prior to professional practice. Skills learned from adapting items can be used to assist clients of all ages in all practice settings

    Expression of RUNX1 correlates with poor patient prognosis in triple negative breast cancer

    Get PDF
    The RUNX1 transcription factor is widely recognised for its tumour suppressor effects in leukaemia. Recently a putative link to breast cancer has started to emerge, however the function of RUNX1 in breast cancer is still unknown. To investigate if RUNX1 expression was important to clinical outcome in primary breast tumours a tissue microarray (TMA) containing biopsies from 483 patients with primary operable invasive ductal breast cancer was stained by immunohistochemistry. RUNX1 was associated with progesterone receptor (PR)-positive tumours (P<0.05), more tumour CD4+(P<0.05) and CD8+(P<0.01) T-lymphocytic infiltrate, increased tumour CD138+plasma cell (P<0.01) and more CD68+macrophage infiltrate (P<0.001). RUNX1 expression did not influence outcome of oestrogen receptor (ER)-positive or HER2-positive disease, however on univariate analysis a high RUNX1 protein was significantly associated with poorer cancer-specific survival in patients with ER-negative (P<0.05) and with triple negative (TN) invasive breast cancer (P<0.05). Furthermore, multivariate Cox regression analysis of cancer-specific survival showed a trend towards significance in ER-negative patients (P<0.1) and was significant in triple negative patients (P<0.05). Of relevance, triple negative breast cancer currently lacks good biomarkers and patients with this subtype do not benefit from the option of targeted therapy unlike patients with ER-positive or HER2-positive disease. Using multivariate analysis RUNX1 was identified as an independent prognostic marker in the triple negative subgroup. Overall, our study identifies RUNX1 as a new prognostic indicator correlating with poor prognosis specifically in the triple negative subtype of human breast cancer

    Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    Get PDF
    An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle

    The Influence of Network Topology on Sound Propagation in Granular Materials

    Full text link
    Granular materials, whose features range from the particle scale to the force-chain scale to the bulk scale, are usually modeled as either particulate or continuum materials. In contrast with either of these approaches, network representations are natural for the simultaneous examination of microscopic, mesoscopic, and macroscopic features. In this paper, we treat granular materials as spatially-embedded networks in which the nodes (particles) are connected by weighted edges obtained from contact forces. We test a variety of network measures for their utility in helping to describe sound propagation in granular networks and find that network diagnostics can be used to probe particle-, curve-, domain-, and system-scale structures in granular media. In particular, diagnostics of meso-scale network structure are reproducible across experiments, are correlated with sound propagation in this medium, and can be used to identify potentially interesting size scales. We also demonstrate that the sensitivity of network diagnostics depends on the phase of sound propagation. In the injection phase, the signal propagates systemically, as indicated by correlations with the network diagnostic of global efficiency. In the scattering phase, however, the signal is better predicted by meso-scale community structure, suggesting that the acoustic signal scatters over local geographic neighborhoods. Collectively, our results demonstrate how the force network of a granular system is imprinted on transmitted waves.Comment: 19 pages, 9 figures, and 3 table

    Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    Get PDF
    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate
    • …
    corecore