166 research outputs found
Observational evidence of aging processes in comets
Emphasis was on searching for systematic differences among two groups of comets: periodic comets which spend most of their time in the vicinity of the inner Solar System and the new comets which are believed to be passing through the inner Solar System for the first time. Such differences are expected, but have never been observed, in part because there has never been a systematic observational program aimed at addressing this question. Understanding possible physical and compositional differences between these two groups will lead to a better understanding of the cometary formation conditions in the early Solar System. The employed method studies the activity in the comets as a function of distance by obtaining charge coupled device (CCD) observations of the comets at frequent intervals on both the pre- and post-perihelion legs of their orbits in order to ascertain the distances at the onset and turn-off of activity through comparison with sublimation models
Fitting the Light Curve of 1I/`Oumuamua with a Nonprincipal Axis Rotational Model and Outgassing Torques
In this paper, we investigate the nonprincipal axis (NPA) rotational state of
1I/`Oumuamua -- the first interstellar object discovered traversing the inner
Solar System -- from its photometric light curve. Building upon Mashchenko
(2019), we develop a model which incorporates NPA rotation and {Sun-induced,
time-varying} outgassing torques to generate synthetic light curves of the
object. The model neglects tidal forces, which are negligible compared to
outgassing torques over the distances that `Oumuamua was observed. We implement
an optimization scheme that incorporates the NPA rotation model to calculate
the initial rotation state of the object. We find that an NPA rotation state
with an average period of hr best reproduces the
photometric data. The discrepancy between this period and previous estimates is
due to continuous period modulation induced by outgassing torques in the
rotational model, {as well as different periods being used}. The best fit to
the October 2017 data does not reproduce the November 2017 data (although the
later measurements are too sparse to fit). The light curve is consistent with
no secular evolution of the angular momentum, somewhat in tension with the
empirical correlations between nuclear spin-up and cometary outgassing. The
complex rotation of `Oumuamua may be {the result of primordial rotation about
the smallest principal axis} if (i) the object experienced hypervolatile
outgassing and (ii) our idealized outgassing model is accurate.Comment: 22 pages, 8 figures, 1 animation. Accepted to the Planetary Science
Journal. The animation can be found on YouTube (https://youtu.be/f5YEAMTvIeo)
and in the online publication by PSJ (when available
Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter
We report on the Hubble Space Telescope program to observe periodic comet
9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were
to study the generation and evolution of the coma resulting from the impact and
to obtain wide-band images of the visual outburst generated by the impact. Two
observing campaigns utilizing a total of 17 HST orbits were carried out: the
first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a
new, short-lived fan in the sunward direction on June 14. The principal
campaign began two days before impact and was followed by contiguous orbits
through impact plus several hours and then snapshots one, seven, and twelve
days later. All of the observations were made using the Advanced Camera for
Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a
spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact.
Baseline images of the comet, made prior to impact, photometrically resolved
the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement
with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following
the impact, the HRC images illustrate the temporal and spatial evolution of the
ejecta cloud and allow for a determination of its expansion velocity
distribution. One day after impact the ejecta cloud had passed out of the
field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus
special issue on Deep Impac
Isotopic ratios in outbursting comet C/2015 ER61
Isotopic ratios in comets are critical to understanding the origin of
cometary material and the physical and chemical conditions in the early solar
nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total
brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp
increase in brightness offered a rare opportunity to measure the isotopic
ratios of the light elements in the coma of this comet. We obtained two
high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017
April 13 and 17. At the time of our observations, the comet was fading
gradually following the outburst. We measured the nitrogen and carbon isotopic
ratios from the CN violet (0,0) band and found that C/C=100
15, N/N=130 15. In addition, we determined the
N/N ratio from four pairs of NH isotopolog lines and measured
N/N=140 28. The measured isotopic ratios of C/2015 ER61 do
not deviate significantly from those of other comets.Comment: 4 pages, 4 figures, accepted to be published by A&
Thermal evolution and activity of Comet 9P/Tempel 1 and simulation of a deep impact
We use a quasi 3-D thermal evolution model for a spherical comet nucleus,
which takes into account the diurnal and latitudinal variation of the solar
flux, but neglects lateral heat conduction. We model the thermal evolution and
activity of Comet 9P/Tempel 1, in anticipation of the Deep Impact mission
encounter with the comet. We also investigate the possible outcome of a
projectile impact, assuming that all the energy is absorbed as thermal energy.
An interesting result of this investigation, is that the estimated amount of
dust ejected due to the impact is equivalent to 2--2.6 days of activity, during
"quiet" conditions, at perihelion.
We show that production rates of volatiles that are released in the interior
of the nucleus depend strongly on the porous structure, in particular on the
surface to volume ratio of the pores. We develop a more accurate model for
calculating this parameter, based on a distribution of pore sizes, rather than
a single, average pore size.Comment: 25 pages, 8 figures, accepted for publication in PASP (in press). For
fig.xx (composite image, sec.4) and a better resolution of fig.6 see,
http://geophysics.tau.ac.il/personal/gal%5Fsarid
Assessing Potential Contributions from Outgassing and Tidal Effects on the Evolving Rotational State of 1I/'Oumuamua
In this paper, we attempt to interpret the photometric light curve of
1I/`Oumuamua, the first interstellar object discovered traversing the inner
Solar System. We compare photometric data with synthetic light curves of
ellipsoidal bodies for a range of rotational states and observing geometries.
While previous work reported an increase in the periodicity of the object
during October, we find a hour decrease in the spin period
between October and November. We investigate potential contributions to the
evolving spin period from both outgassing and tidal effects using a general
formalism which may be applied to any elongated object. While sublimation is a
stronger effect, tidal deformation could change the moment of inertia and
subsequent spin period based on the bulk material properties. We present an
open source software which simulates constant-density, constant-viscosity
liquid bodies subject to tidal forces for a range of assumed viscosites and
sizes (). These numerical simulations, when applied to
`Oumuamua, demonstrate that it may have experienced significant tidal
deformation in the presence of sublimation. However, synthetic observations
which incorporate tidal effects demonstrate that little deformation is
necessary to match the composite light curve. We find that a dynamic viscosity
of g cm s, corresponding to a 0.1\% change in
moment of inertia, best reproduces the photometric data. It is feasible that
tidal deformation contributed to the shorter timescale spin-down in October,
while outgassing induced the secular spin-up.Comment: 30 pages, 24 figures, 5 tables. Submitted to AAS Planetary Science
Journal. Comments very welcome. Publicly available software at
https://github.com/astertaylor/Oumuamu
WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs
On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey
Explorer (WISE) spacecraft imaged the Rosetta mission target, comet
67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images,
which provide a characterization of the dust environment at heliocentric
distances similar to those planned for the initial spacecraft encounter, but on
the outbound leg of its orbit rather than the inbound. Broad-band photometry
yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU
and no detectable production at 4.18 AU. We find that at these heliocentric
distances, large dust grains with mean grain diameters on the order of a
millimeter or greater dominate the coma and evolve to populate the tail. This
is further supported by broad-band photometry centered on the nucleus, which
yield an estimated differential dust particle size distribution with a power
law relation that is considerably shallower than average. We set a 3-sigma
upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our
best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/-
0.01) are in agreement with measurements previously reported in the literature
- …