166 research outputs found

    Observational evidence of aging processes in comets

    Get PDF
    Emphasis was on searching for systematic differences among two groups of comets: periodic comets which spend most of their time in the vicinity of the inner Solar System and the new comets which are believed to be passing through the inner Solar System for the first time. Such differences are expected, but have never been observed, in part because there has never been a systematic observational program aimed at addressing this question. Understanding possible physical and compositional differences between these two groups will lead to a better understanding of the cometary formation conditions in the early Solar System. The employed method studies the activity in the comets as a function of distance by obtaining charge coupled device (CCD) observations of the comets at frequent intervals on both the pre- and post-perihelion legs of their orbits in order to ascertain the distances at the onset and turn-off of activity through comparison with sublimation models

    Fitting the Light Curve of 1I/`Oumuamua with a Nonprincipal Axis Rotational Model and Outgassing Torques

    Full text link
    In this paper, we investigate the nonprincipal axis (NPA) rotational state of 1I/`Oumuamua -- the first interstellar object discovered traversing the inner Solar System -- from its photometric light curve. Building upon Mashchenko (2019), we develop a model which incorporates NPA rotation and {Sun-induced, time-varying} outgassing torques to generate synthetic light curves of the object. The model neglects tidal forces, which are negligible compared to outgassing torques over the distances that `Oumuamua was observed. We implement an optimization scheme that incorporates the NPA rotation model to calculate the initial rotation state of the object. We find that an NPA rotation state with an average period of P7.34\langle P \rangle\simeq7.34 hr best reproduces the photometric data. The discrepancy between this period and previous estimates is due to continuous period modulation induced by outgassing torques in the rotational model, {as well as different periods being used}. The best fit to the October 2017 data does not reproduce the November 2017 data (although the later measurements are too sparse to fit). The light curve is consistent with no secular evolution of the angular momentum, somewhat in tension with the empirical correlations between nuclear spin-up and cometary outgassing. The complex rotation of `Oumuamua may be {the result of primordial rotation about the smallest principal axis} if (i) the object experienced hypervolatile outgassing and (ii) our idealized outgassing model is accurate.Comment: 22 pages, 8 figures, 1 animation. Accepted to the Planetary Science Journal. The animation can be found on YouTube (https://youtu.be/f5YEAMTvIeo) and in the online publication by PSJ (when available

    Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter

    Get PDF
    We report on the Hubble Space Telescope program to observe periodic comet 9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus special issue on Deep Impac

    Isotopic ratios in outbursting comet C/2015 ER61

    Full text link
    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0,0) band and found that 12^{12}C/13^{13}C=100 ±\pm 15, 14^{14}N/15^{15}N=130 ±\pm 15. In addition, we determined the 14^{14}N/15^{15}N ratio from four pairs of NH2_2 isotopolog lines and measured 14^{14}N/15^{15}N=140 ±\pm 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.Comment: 4 pages, 4 figures, accepted to be published by A&

    Thermal evolution and activity of Comet 9P/Tempel 1 and simulation of a deep impact

    Full text link
    We use a quasi 3-D thermal evolution model for a spherical comet nucleus, which takes into account the diurnal and latitudinal variation of the solar flux, but neglects lateral heat conduction. We model the thermal evolution and activity of Comet 9P/Tempel 1, in anticipation of the Deep Impact mission encounter with the comet. We also investigate the possible outcome of a projectile impact, assuming that all the energy is absorbed as thermal energy. An interesting result of this investigation, is that the estimated amount of dust ejected due to the impact is equivalent to 2--2.6 days of activity, during "quiet" conditions, at perihelion. We show that production rates of volatiles that are released in the interior of the nucleus depend strongly on the porous structure, in particular on the surface to volume ratio of the pores. We develop a more accurate model for calculating this parameter, based on a distribution of pore sizes, rather than a single, average pore size.Comment: 25 pages, 8 figures, accepted for publication in PASP (in press). For fig.xx (composite image, sec.4) and a better resolution of fig.6 see, http://geophysics.tau.ac.il/personal/gal%5Fsarid

    Assessing Potential Contributions from Outgassing and Tidal Effects on the Evolving Rotational State of 1I/'Oumuamua

    Get PDF
    In this paper, we attempt to interpret the photometric light curve of 1I/`Oumuamua, the first interstellar object discovered traversing the inner Solar System. We compare photometric data with synthetic light curves of ellipsoidal bodies for a range of rotational states and observing geometries. While previous work reported an increase in the periodicity of the object during October, we find a Δp0.21\Delta p\simeq0.21 hour decrease in the spin period between October and November. We investigate potential contributions to the evolving spin period from both outgassing and tidal effects using a general formalism which may be applied to any elongated object. While sublimation is a stronger effect, tidal deformation could change the moment of inertia and subsequent spin period based on the bulk material properties. We present an open source software which simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosites and sizes (SAMUS\texttt{SAMUS}). These numerical simulations, when applied to `Oumuamua, demonstrate that it may have experienced significant tidal deformation in the presence of sublimation. However, synthetic observations which incorporate tidal effects demonstrate that little deformation is necessary to match the composite light curve. We find that a dynamic viscosity of μ109\mu\geq10^9 g cm1^{-1} s1^{-1}, corresponding to a 0.1\% change in moment of inertia, best reproduces the photometric data. It is feasible that tidal deformation contributed to the shorter timescale spin-down in October, while outgassing induced the secular spin-up.Comment: 30 pages, 24 figures, 5 tables. Submitted to AAS Planetary Science Journal. Comments very welcome. Publicly available software at https://github.com/astertaylor/Oumuamu

    WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs

    Get PDF
    On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature
    corecore