10 research outputs found

    Inclusión laboral del adulto mayor en Chile, una perspectiva conceptual de la gestión del conocimiento

    Get PDF
    En este artículo se reflexionará acerca del fenómeno del envejecimiento de la fuerza laboral que hoy día enfrentan nuestros países, y específicamente Chile, al mencionar tanto las causas como las consecuencias que esto puede ocasionar. Junto con ello, se señalan las posibilidades que existen para que los adultos mayores puedan aportar los conocimientos que traen desde su experiencia y cómo, a través de ello, se puede hacer una gestión desde el conocimiento. Para lograr una mayor comprensión de este problema, en primer lugar se define el concepto de envejecimiento y la composición de la fuerza laboral chilena para, posteriormente, profundizar acerca de la gestión del conocimiento y sus implicancias

    Effects of zinc on the right cardiovascular circuit in long-term hypobaric hypoxia in wistar rats

    Full text link
    Hypobaric hypoxia under chromic conditions triggers hypoxic pulmonary vasoconstriction (HPV) and right ventricular hypertrophy (RVH). The role of zinc (Zn) under hypoxia is controversial and remains unclear. We evaluated the effect of Zn supplementation in prolonged hypobaric hypoxia on HIF2α/MTF-1/MT/ZIP12/PKCε pathway in the lung and RVH. Wistar rats were exposed to hypobaric hypoxia for 30 days and randomly allocated into three groups: chronic hypoxia (CH); intermittent hypoxia (2 days hypoxia/2 days normoxia; CIH); and normoxia (sea level control; NX). Each group was subdivided (n = 8) to receive either 1% Zn sulfate solution (z) or saline (s) intraperitoneally. Body weight, hemoglobin, and RVH were measured. Zn levels were evaluated in plasma and lung tissue. Additionally, the lipid peroxidation levels, HIF2α/MTF-1/MT/ZIP12/PKCε protein expression and pulmonary artery remodeling were measured in the lung. The CIH and CH groups showed decreased plasma Zn and body weight and increased hemoglobin, RVH, and vascular remodeling; the CH group also showed increased lipid peroxidation. Zn administration under hypobaric hypoxia upregulated the HIF2α/MTF-1/MT/ZIP12/PKCε pathway and increased RVH in the intermittent zinc group. Under intermittent hypobaric hypoxia, Zn dysregulation could participate in RVH development through alterations in the pulmonary HIF2α/MTF1/MT/ZIP12/PKCε pathwa

    Lower body weight in rats under hypobaric hypoxia exposure would lead to reduced right ventricular hypertrophy and Increased AMPK activation

    Full text link
    Background: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure lead to right ventricular hypertrophy (RVH). Weight loss is an effective intervention to improve cardiac function and energy metabolism in cardiac hypertrophy. Likewise, caloric restriction (CR) also plays an important role in this cardioprotection through AMPK activation. We aimed to determine the influence of body weight (BW) on RVH, AMPK and related variables by comparing rats exposed to both hypoxic conditions. Methods: Sixty male adult rats were separated into two groups (n = 30 per group) according to their previous diet: a caloric restriction (CR) group and an ad libitum (AL) group. Rats in both groups were randomly assigned to 3 groups: a normoxic group (NX, n = 10), a CIH group (2 days hypoxia/2 days normoxia; n = 10) and a CH group (n = 10). The CR group was previously fed 10 g daily, and the other was fed ad libitum. Rats were exposed to simulated hypobaric hypoxia in a hypobaric chamber set to 428 Torr (the equivalent pressure to that at an altitude of 4,600 m above sea level) for 30 days. Measurements included body weight; hematocrit; serum insulin; glycemia; the degree of RVH (Fulton’s index and histology); and AMPK, mTOR, and PP2C expression levels in the right ventricle determined by western blotting. Results: A lower degree of RVH, higher AMPK activation, and no activation of mTOR were found in the CR groups exposed to hypobaric hypoxia compared to the AL groups (p < 0.05). Additionally, decreased glycemia and serum insulin levels were observed. Interestingly, PP2C expression showed an increase in the AL groups but not in the CR groups (p < 0.05). Conclusion: Maintaining a low weight before and during exposure to high-altitude hypoxia, during either CH or CIH, could prevent a major degree of RVH. This cardioprotection would likely be due to the activation of AMPK. Thus, body weight is a factor that might contribute to RVH at high altitudes.This study was supported by grants from projects GORE FIC Tarapacá BIP30477541-0 and Internal Project VRIIP0098

    Adventitial alterations are the main features in pulmonary artery remodeling due to long-term chronic intermittent hypobaric hypoxia in rats

    Full text link
    Long-termchronic intermittent exposure to altitude hypoxia is a labor phenomenon requiring further research. Using a rat model, we examined whether this type of exposure differed from chronic exposure in terms of pulmonary artery remodeling and other features. Rats were subjected to chronic hypoxia (CH, = 9) and long-term intermittent hypoxia (CIH2x2; 2 days of hypoxia/2 days of normoxia, = 10) in a chamber (428 Torr, 4,600m of altitude) for 46 days and compared to rats under normoxia (NX, = 10). Body weight, hematocrit, and right ventricle ratio were measured. Pulmonary artery remodeling was assessed using confocal microscopy of tissues stained with a nuclear dye (DAPI) and CD11b antibody. Both hypoxic conditions exhibited increased hematocrit and hypertrophy of the right ventricle, tunica adventitia, and tunica media, with no changes in lumen size. The medial hypertrophy area (larger in CH) depicted a significant increase in smooth muscle cell number. Additionally, CIH2x2 increased the adventitial hypertrophy area, with an increased cellularity and a larger prevalence of clustered inflammatory cells. In conclusion, CIH2x2 elicitsmilder effects on pulmonary artery medial layermuscularization and subsequent right ventricular hypertrophy than CH. However, CIH2x2 induces greater and characteristic alterations of the adventitial layerThis work was funded by GORE-FNDR-BIP: 30125349-0, AECID Nº A/030023/10, and CYTED-ALTMEDFIS grant

    Long-Term Chronic Intermittent Hypobaric Hypoxia Induces Glucose Transporter (GLUT4) Translocation Through AMP-Activated Protein Kinase (AMPK) in the Soleus Muscle in Lean Rats

    Get PDF
    Background: In chronic hypoxia (CH) and short-term chronic intermittent hypoxia (CIH) exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX) and compared the findings.Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr) group (n = 10), a CIH group (2 days hypoxia/2 days NX; n = 10) and a CH group (n = 10). Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m). Feeding (10 g daily) and fasting times were accurately controlled. Measurements included food intake (every 4 days), weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA), and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30.Results: (1) Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05). (2) A moderate decrease in glycemia and plasma insulin was found. (3) Insulin sensitivity was greater in the CIH group (p < 0.05). (4) There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5) The level of activated AMPK was increased only in the CIH group (p < 0.05). (6) Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05).Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there is no increase of GLUT1 or GLUT4 levels or in Akt activation. Therefore, cellular regulation of glucose seems to primarily involve GLUT4 translocation to the cell membrane in response to hypoxia-mediated AMPK activation

    Inclusión laboral del adulto mayor en Chile, una perspectiva conceptual de la gestión del conocimiento

    No full text
    En este artículo se reflexionará acerca del fenómeno del envejecimiento de la fuerza laboral que hoy día enfrentan nuestros países, y específicamente Chile, al mencionar tanto las causas como las consecuencias que esto puede ocasionar. Junto con ello, se señalan las posibilidades que existen para que los adultos mayores puedan aportar los conocimientos que traen desde su experiencia y cómo, a través de ello, se puede hacer una gestión desde el conocimiento. Para lograr una mayor comprensión de este problema, en primer lugar se define el concepto de envejecimiento y la composición de la fuerza laboral chilena para, posteriormente, profundizar acerca de la gestión del conocimiento y sus implicancias

    Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia

    No full text
    Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitric oxide (NO), metallothionein (MT), zinc-regulated, iron-regulated transporter-like protein (ZIP), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced protein kinase C epsilon (PKCε) activation in the development of HPV. In conclusion, there is an association between elevated Zn2+ levels and oxidative stress in HPV under different models of hypoxia, which contribute to understanding the molecular mechanism involved in HPV to prevent the development of HAPH

    Long-Term Chronic Intermittent Hypobaric Hypoxia in Rats Causes an Imbalance in the Asymmetric Dimethylarginine/Nitric Oxide Pathway and ROS Activity: A Possible Synergistic Mechanism for Altitude Pulmonary Hypertension?

    No full text
    Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pulmonary hypertension (HAPH). Asymmetric dimethylarginine (ADMA), a NO synthase (NOS) inhibitor, may contribute to HAPH. This study assessed changes in the ADMA/NO pathway and the underlying mechanisms in rat lungs following exposure to CIH or CH simulated in a hypobaric chamber at 428 Torr. Twenty-four adult Wistar rats were randomly assigned to three groups: CIH2x2 (2 days of hypoxia/2 days of normoxia), CH, and NX (permanent normoxia), for 30 days. All analyses were performed in whole lung tissue. L-Arginine and ADMA were analyzed using LC-MS/MS. Under both hypoxic conditions right ventricular hypertrophy was observed (p<0.01) and endothelial NOS mRNA increased (p<0.001), but the phosphorylated/nonphosphorylated vasodilator-stimulated phosphoprotein (VASP) ratio was unchanged. ADMA increased (p<0.001), whereas dimethylarginine dimethylaminohydrolase (DDAH) activity decreased only under CH (p<0.05). Although arginase activity increased (p<0.001) and L-arginine exhibited no changes, the L-arginine/ADMA ratio decreased significantly (p<0.001). Moreover, NOX4 expression increased only under CH (p<0.01), but malondialdehyde (MDA) increased (up to 2-fold) equally in CIH2x2 and CH (p<0.001). Our results suggest that ADMA and oxidative stress likely reduce NO bioavailability under altitude hypoxia, which implies greater pulmonary vascular reactivity and tone, despite the more subdued effects observed under CIH

    Effect of Confinement on Anxiety Symptoms and Sleep Quality during the COVID-19 Pandemic

    No full text
    Confinement during the COVID-19 pandemic has significantly impacted lifestyles worldwide. The aim of this study was to evaluate the effect of confinement on anxiety symptoms and sleep quality in people living in extreme southern latitudes. The Beck Anxiety Inventory (BAI) and the Pittsburgh Sleep Quality Index (PSQI) were administered to 617 people, 74.2% of whom were women. The sample was grouped according to confinement: the zone of confinement (CZ) (46.5%) and the zone of partial confinement (PZ) (53.5%). In addition, the sample was further categorized into four age subgroups (18–25 years; 26–40 years; 41–50 years; over 50 years). Higher levels of anxiety and worse sleep quality were found in the CZ group than in the PZ group. Women had higher levels of anxiety and worse sleep quality than men. A significant bidirectional relationship between anxiety and sleep quality was observed, even after controlling for sex. This study demonstrated that women and young adults were more vulnerable to the effects of confinement on anxiety symptoms and sleep quality in populations at southern latitudes

    Nitric Oxide and Superoxide Anion Balance in Rats Exposed to Chronic and Long Term Intermittent Hypoxia

    Get PDF
    Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations
    corecore