31 research outputs found

    Chikungunya virus infections in Finnish travellers 2009-2019 : Infection Ecology & Epidemiology

    Get PDF
    ABSTRACT The mosquito-borne chikungunya virus (CHIKV) causes an acute febrile illness with rash, joint and muscle pain.A realtime RT-PCR assay for CHIKV detecting non-structural protein (nsP2; CHIKV nsP2-RT-qPCR) was set up. All the serodiagnosed CHIKV cases detected during 2009-2019 in Finland were screened with the assay, followed by isolations attempts and sequencing using Sanger and next generation sequencing (NGS). To validate the assay external and in-house quality control samples were used and all were correctly identified. Specificity of the assay was 100%. Assay was sensitive to detect CHIKV RNA in dilution of 10-8.During years 2009-2019 34 patients were diagnosed for acute CHIKV infection. Twelve out of 34 cases were positive by CHIKV nsP2-RT-qPCR.Two CHIKV isolations succeeded from two individuals infected originally in Thailand, 2019. From 12 CHIKV nsP2-RT-qPCR positive samples, five (42%) CHIKVs were successfully sequenced. In this study, CHIKVs from year 2019 clustered with CHIKV ECSA-lineage forming sub-cluster with strains from ones detected in Bangladesh 2017, and the ones from Jamaica (2014) within Asian lineage showing highest similarity to strains detected in Caribbean outbreak 2013-15.  Majority of the CHIKV infections detected in Finland originates from Asia and virus lineages reflect the global circulation of the pathogen.Peer reviewe

    Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces

    Get PDF
    With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper-silver (Cu-Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (similar to 56, similar to 59, and similar to 48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (similar to 28, similar to 13, and similar to 11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models.Peer reviewe

    Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces

    Get PDF
    With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper–silver (Cu–Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (~56, ~59, and ~48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (~28, ~13, and ~11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models

    Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces

    Get PDF
    With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper–silver (Cu–Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (~56, ~59, and ~48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (~28, ~13, and ~11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Get PDF
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≄20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response “Mean: 561.11”. Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients’ previous medical history (anamnesis) should be considered in interpreting serological results

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Full text link
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≄20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response “Mean: 561.11”. Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients’ previous medical history (anamnesis) should be considered in interpreting serological results. Keywords: SARS-CoV-2; ELISA; micro-neutralization assay; IgM; IgA; IgG ELISA; Makkah; Saudi Arabi

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Get PDF
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of >= 20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response "Mean: 561.11". Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients' previous medical history (anamnesis) should be considered in interpreting serological results.Peer reviewe

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Get PDF
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≄20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response “Mean: 561.11”. Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients’ previous medical history (anamnesis) should be considered in interpreting serological results

    Myeloperoxidase gene-463G > A polymorphism and premature coronary artery disease

    Get PDF
    We investigated the association between myeloperoxidase gene -463G > A polymorphism and premature coronary artery disease (CAD) in two Chinese population samples: 229 patients and 230 controls. Genotypes were determined by ligase detection reaction-polymerase chain reaction sequencing and the grouping technique. We found lower frequencies of both the A/A genotype and the A allele in patients (p < 0.05). Multivariate logistic regression showed that the risk of premature CAD in subjects carrying the AA genotype was reduced by 83% in relation to individuals carrying the G/G genotype (OR = 0.172, 95% CI: 0.057-0.526, p = 0.002). Our results indicate that -463G > A polymorphism of the myeloperoxidase gene is associated with premature CAD in Chinese individuals, suggesting that the AA genotype is a protective factor against premature CAD

    Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk

    Get PDF
    Aims Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. Methods and results Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe−/− mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1ÎČ secretion by macrophages in the plaque. Conclusions We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe−/− mice. These results point toward a promising treatment to combat atherosclerosis
    corecore