2 research outputs found

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Detection of Clonal and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a Massively Multiplexed PCR Methodology

    Get PDF
    We demonstrate proof-of-concept for the use of massively multiplexed PCR and next-generation sequencing (mmPCR-NGS) to identify both clonal and subclonal copy-number variants (CNVs) in circulating tumor DNA. This is the first report of a targeted methodology for detection of CNVs in plasma. Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing approaches. Our method revealed differences in the spectrum of CNVs detected in tumor tissue subsections and matching plasma samples from 11 patients with stage II breast cancer. Moreover, we showed that liquid biopsies are able to detect subclonal mutations that may be missed in tumor tissue biopsies. We anticipate that this mmPCR-NGS methodology will have broad applicability for the characterization, diagnosis, and therapeutic monitoring of CNV-enriched cancers, such as breast, ovarian, and lung cancer
    corecore