6 research outputs found

    Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone

    Get PDF
    Data annotation is a time-consuming process posing major limitations to the development of Human Activity Recognition (HAR) systems. The availability of a large amount of labeled data is required for supervised Machine Learning (ML) approaches, especially in the case of online and personalized approaches requiring user specific datasets to be labeled. The availability of such datasets has the potential to help address common problems of smartphone-based HAR, such as inter-person variability. In this work, we present (i) an automatic labeling method facilitating the collection of labeled datasets in free-living conditions using the smartphone, and (ii) we investigate the robustness of common supervised classification approaches under instances of noisy data. We evaluated the results with a dataset consisting of 38 days of manually labeled data collected in free living. The comparison between the manually and the automatically labeled ground truth demonstrated that it was possible to obtain labels automatically with an 80–85% average precision rate. Results obtained also show how a supervised approach trained using automatically generated labels achieved an 84% f-score (using Neural Networks and Random Forests); however, results also demonstrated how the presence of label noise could lower the f-score up to 64–74% depending on the classification approach (Nearest Centroid and Multi-Class Support Vector Machine)

    Improving Wi-Fi based Indoor Positioning using Particle Filter based on Signal Strength

    No full text
    Indoor positioning is recognized as one of the upcoming major applications which can be used in wide variety of applications such as indoor navigation and enterprise asset tracking. The significance of localization in indoor environments have made the use of Wi-Fi based indoor positioning so that it can utilize available current wireless infrastructure and perform positioning very easily. In this paper we introduced a user friendly prototype for Wi-Fi based indoor positioning system where a user can identify its own position in indoor. Wi-Fi received signal strength (RSS) fluctuations over time introduce incorrect positioning To minimize the fluctuation of RSS, we developed Particle Filters with the prototype. A comparison between with and without Particle Filter for error performance is presented and at the same time it is also noticed that variation in number of particles could change the positioning accuracy. Moreover comparison between calibration data in all directions and in one direction while constructing a radio map is presented
    corecore