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Abstract—The use of smartphones for activity recognition is
becoming common practice. Most approaches use a single pre-
trained classifier to recognize activities for all users. Research
studies, however, have highlighted how a personalized trained
classifier could provide better accuracy. Data labeling for ground
truth generation, however, is a time-consuming process. The
challenge is further exacerbated when opting for a personalized
approach that requires user specific datasets to be labeled,
making conventional supervised approaches unfeasible. In this
work, we present early results on the investigation into a weakly
supervised approach for online personalized activity recognition.
This paper describes: (i) a heuristic to generate weak labels used
for personalized training, (ii) a comparison of accuracy obtained
using a weakly supervised classifier against a conventional ground
truth trained classifier. Preliminary results show an overall
accuracy of 87% of a fully supervised approach against a 74%
with the proposed weakly supervised approach.

Index Terms— data annotation, weakly supervised learning,
smartphone activity recognition.

I. INTRODUCTION

The use of smartphones as unobtrusive devices to perform
Human Activity Recognition (HAR) is becoming increasingly
prevalent in the assistive technology literature [1] [2]. These
devices were once considered incapable of running HAR
systems in real-time. This was either due to limited resources
in terms of computational capabilities, or because of limited
battery life when used to perform continuous monitoring.
Within the last few years, however, advancement in technology
has brought smartphones to a new level of sophistication, mak-
ing them ideal candidates for HAR. This is primarily due to the
availability of a wide range of on-board sensors. Furthermore,
smartphones are perceived by users as unobtrusive devices
despite their pervasiveness. This trend is confirmed by major
mobile OSs, offering HAR functionalities within their APIs
[3]. Sensor based activity recognition, in particular, the use
of inertial sensors for HAR has been deeply investigated [4].
When moving proposed HAR approaches to an embedded
solution, however, a number of limitations arise. For example,
in most cases, studies have focused on wearable sensors (with
sensor location known a priori) and developed solutions are
not position independent [1] [2]. The assumption that users
will carry the smartphone in a predefined position, however,
is not valid in a free-living setting. Another major limitation
resides in the lack of personalization, i.e. solutions are trained

offline (often with data collected in controlled environments)
with a single classifier for all users, although some users
may have very different behaviors than others [1], and a
personalized approach has shown better results [5]. Some
solutions have been proposed to tackle the sensor positioning
problem, however, very few studies have explored the use of
smartphones for online training (i.e. training locally on the
smartphone) and personalized training (i.e., training a user-
specific classifier) [2]. This is mainly due to the hurdle of
generating the ground truth. Unless an efficient ground truth
generation method can be achieved, personalization is not
viable using supervised learning approaches for HAR. Data
annotation methods have been widely discussed to facilitate
ground truth collection, and different approaches have been
proposed. One example is tools to support manual annotation
of datasets [6] [7] in order to (at least partially) automate
the process. These tools can speed up the process of data
annotation, however, the manual labeling is still required
making this approach not viable for a personalized approach.
The use of smartphones for data annotation has also been
proposed. The advantage in this case is that users can directly
annotate data fragments [8], yielding a more flexible approach.
The fact that human interaction is still required at some stage
though, makes the process time consuming for the users.

Among data-driven approaches towards HAR, it is worth
mentioning that unsupervised approaches have also been pro-
posed. These approaches do not require the availability of
large labeled datasets. Nevertheless, in this study, we focus on
personalization of supervised approaches, and specifically on
exploring weak supervision to remove the burden of generating
a user specific ground truth. In this paper, we propose a weakly
supervised approach (i.e. trained using weak labels generated
via a heuristic), and evaluate its performance in terms of
accuracy against a conventional supervised learning method
that requires manual ground truth generation.

The rest of the paper is structured as follows. Section II
highlights related works, trends and limitations of the state
of the art. Section III introduces the proposed approach, while
the adopted methodology for evaluation is explained in section
IV. Section V and VI provide details on preliminary results
comparing weakly supervised approach to a fully supervised
one. Finally, section VII summarizes possible directions for
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future work.

II. RELATED WORK

The research field of sensor based HAR has been widely
investigated in recent years [2] [9]. Yet, considering the
computational capabilities offered by modern smartphones,
there is scope for a new line of investigation towards online
and personalized training using mobile devices offering the
potential of improved levels of recognition performance. In
this respect, personalized means a tailored approach, trained
on user specific data. Similarly, by online we mean that some
part of the classification workflow can be performed in real-
time and locally on the smartphone. This is opposed to online
machine learning, where the term online identifies techniques
that can adapt to new available data points in the training
set [2]. In this section, we analyze solutions proposed in
the literature and their viability for an online personalized
training approaches using smartphones. Sensor based HAR is
an advanced and broad field of investigation. Among the wide
range of proposed sensing modalities, inertial motion sensors
(accelerometer, gyroscope) have been widely used [2] [9]. In
smartphone based HAR, together with inertial sensors, it is
more common to include other on-board information sources,
as GPS [2]. A solution focusing solely on accelerometer has,
however, been considered as optimal in terms of tradeoff
between accuracy and battery consumption, and therefore
adopted in many cases [1]. More common features used
for accelerometry HAR are in the time domain (e.g. mean,
variance and min-max range) [1] [2]. Frequency domain
features have also been used. Although similar features may
not be ideal when trying to develop a smartphone embedded
solution continuously monitoring activity. This is mainly due
to the complexity of the Discrete Fourier Transform (DFT)
calculation, making it resource intensive [1]. When the sensor
position and orientation is known a priori, the feature ex-
traction on the three axes of the signal has been proven to
be more informative [1] [2]. Unfortunately, this assumption
is not valid when considering a smartphone based solution in
free-living. To address this, a hierarchical approach has been
proposed. This approach aims first to identify location and
orientation of the sensor, and then to run the appropriately
trained classifier [1] [2]. Alternatively, solutions based on
features extracted from the magnitude of the 3D acceleration
are utilized in order to have a feature set that is orientation
independent [1]. Similarly, sign-invariant features based on
the absolute value from the three axes have been used to
provide invariance to some orientations [1]. A sampling rate
between 20-30 Hz is widely adopted in monitoring physical
activity, since most part of the information to monitor physical
activities resides in a 10-15 Hz range [1] [2]. Feature extraction
is generally realized through a sliding window approach,
with a 50% overlap being the most used technique [1].
Generally, window sizes vary between 1 and 10 seconds,
with 1-2 seconds being considered optimal [1]. This, however,
depends on the subset of specific activities to be detected [1].
In most cases the set of target activities contains activities

such as sitting, standing, walking, running, cycling or using
some means of transportation [1] [2]. In terms of supervised
classification methods Decision Trees (DTs), Support Vector
Machines (SVMs) and k-Nearest Neighbors (kNN) are the
most common in smartphone based HAR [1]. Neural Networks
(NNs) and more recently Convolutional Neural Networkss
(CNNs) have also been used [1] [2]. Deep learning approaches
such as CNNs have been shown to improve accuracy [1]. The
complexity of such approaches, however, make deep learning
methods not applicable for embedded smartphone solutions, at
least in the short term. Focusing on smartphone based solutions
for HAR, the classification or prediction stage is usually
performed locally (on the smartphone) and in real-time. Unlike
classification, the training phase is, in most cases, performed
offline, and one classifier is trained for all users beforehand [2].
This is confirmed by evaluation methods that often are based
on leave-one-subject-out for validation [1]. Online solutions
using a client-server approach have also been proposed [2]. In
this case, features are extracted locally, however, classification
is performed remotely on the server-side. These solutions are,
however, dependent on a reliable internet connection to operate
continuously.

State of the art accuracy in controlled environments for
detecting activities such as sitting, standing, walking, run-
ning, cycling or use of transportation range between 85-95%
depending on the target activities and classification method,
however, the accuracy is lower for unknown subjects (i.e.
subjects who have not been used to train the classifier) [1].
Moreover, the majority of studies only consider data gathered
in controlled environments, although some studies have shown
how accuracy can drop significantly (up to 17%) when moving
lab-trained classifiers to uncontrolled free-living setting [10].
While much has been undertaken in exploring different tech-
niques and approaches for sensor based HAR, more research
is required in the area of personalized and intelligent solutions,
able to adapt to the specific user needs [1] [2]. For instance, it
has been observed that a generic classifier can work better with
some users, however, have poor performance with others [1].
For supervised methods ground truth generation makes the
personalized approach unviable. Some alternative approaches,
such as user solicitation, have been proposed in order to facil-
itate the generation of labeled datasets [8]. Similarly, weakly
supervised approaches have also been proposed as in [11]. In
this case the weak supervision requires to label only a subset
of train data points. Label propagation is then used to realize
semi-supervised learning. Although this approach significantly
reduces the problem of data annotation, some manual labelling
is still required in order to collect the ground truth. Moreover,
most of the attention so far has been focused only on the
final recognition accuracy, without considering aspects as the
tradeoff between accuracy and resource consumption (either in
terms of battery, computational complexity or memory) [2].

III. IMPLEMENTATION

The proposed approach aims to perform HAR based only on
accelerometer data with a sampling rate of 30 Hz. To optimize
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the solution for a smartphone embedded scenario, only time
domain features have been evaluated, specifically:

• rotation independent features extracted from the magni-
tude of the acceleration (mean, variance and min-max
distance of 3D magnitude of acceleration),

• additional sign invariant features as the absolute value of
mean acceleration for the three axes (i.e. absolute value
of mean acceleration on X, Y and Z axes).

The proposed training method for classification is weakly
supervised, i.e. (weak) ground truth generation is based on
weak labels obtained through an heuristic as in [12], as
opposed to semi-supervised methods that make use of un-
labelled datapoints but still require a subset of labeled data
for training [13] [11]. The generation of weak labels will be
described in III-A.

As in the case of feature selection, the same approach
has been followed to identify suitable classification methods,
opting primarily for multi-class computationally inexpensive
methods; if not in the training phase, at least in the classi-
fication/prediction stage. As such, DTs, NNs and kNN have
been identified as potential candidates. Considering that our
approach is based on weak labels (i.e. some data points can
be mislabeled), kNN have been excluded to avoid direct use
of mislabeled samples at prediction stage.

Although NNs are computationally more expensive than
DTs, the approach can still be viable to run real-time pre-
diction on the smartphone. Furthermore, NNs allow to update
weights when new data points are available, performing online
training. Moreover, a pretrained NNs can be used to set initial
weights, thus solving the cold-start problem.

This study focused on distinguishing the following physical
activities set: sitting, standing, walking, running, cycling and
using any means of transportation (i.e. without distinguishing
between car, train or bus). The set of target activities has been
restricted to sitting, standing, walking and transportation since
data gathered in free-living were not representative across
all classes. Therefore, the study focused on those classes
providing a more balanced dataset, since the same classes are
also the more informative to monitor physical activity on our
target group (older adults).

A. Heuristic function for weak Labeling

The heuristic used to generate weak labels is the combina-
tion of two information sources: GPS and step counter. The
GPS provides valuable information that can easily discriminate
between walking, running, or using transportation based on
estimated speed that can be computed between consecutive
timestamped GPS locations (e.g. walking '1.4-2.0m/s, run-
ning '3.0-6.0m/s or transportation ≥8m/s). A GPS only based
heuristic though, would easily provide false positives (e.g.
driving in traffic can result in similar speed to running or
walking patterns), or missing information indoor (e.g. running
on treadmill at the gym). To reduce the likelihood of having
mislabeled samples, the combination with a step counter is
used to refine the labeling.

Modern Android smartphones often provide an on-board
step counter. A simple step detector has been implemented
however, to provide compatibility with a wider range of mod-
els. The step counter calculation is performed by computing
the magnitude of 3D acceleration. The resulting signal is then
pre-processed through a Butterworth low-pass filter (with cut
off frequency at 15 Hz as in [14]), and finally a peak detection
algorithm identifies local maxima over the resulting signal as
steps candidate. Potential steps are then accepted or rejected
based on a simple amplitude threshold (i.e. ignoring peaks
which are too small) and checking that the corresponding
steps per minute (spm) rate resides in acceptable ranges (e.g.
walking is typically between 60-110 spm, running 150-180
spm [15]). The final heuristic combines GPS and step counter
data in a rule-based intersection of the sources. This allows
for instance, to distinguish driving in traffic against a false
positive of running because the step counter will not be in
the acceptable range, or to detect a workout running session
at the gym that would not be detectable via GPS. Similarly,
false positive of the step detector can be filtered by using
acceptable ranges (in terms of step per minutes rate), and GPS
information (e.g. eliminating false positives detected while
driving a car). Fig.1 presents an example of data fragments
with the corresponding weak label Walking and Transportation
assigned using the heuristic.

(a)

(b)

Fig. 1. (a) 5s of acceleromtery raw data with weak label ’walking’. (b) 5s
of accelerometry raw data with weak label ’transportation’
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B. Architectural view

The HAR framework consists of an Android app that col-
lects data from on-board sensors. A periodic routine retrieves
GPS location every 5 minutes, while 5 seconds of accelerom-
eter raw data are collected every 3 minutes. This information
rate has been empirically identified as being a good tradeoff
between quality of resulting weak labels and the required
amount of memory and data to transmit. Collected information
is sent to the main server application which provides secure
services for authentication, and data storage. Periodically, a
Python script will retrieve data for all users and proceed to
train the classifier on the server side when a sufficient amount
data is available. In this prototype Python scikit-learn library
[16] has been used for training the classifier. Once the classifier
has been trained the parameters are saved in Predictive Model
Markup Language (PMML). The parameters can be sent back
to the local Android app. Based on the classifier parameters,
the app can update the classification method to be used in real-
time instantiating a new classifier loading the PMML model.
The overall process is depicted in Fig.2.

every 

3 minutes

every 

5 minutes

Fig. 2. Architecture for HAR personalized online training. The Android app
continuously monitors accelerometry data and saves a 5s fragment every 3
minutes to be sent to the server. Weak labels obtained combining GPS and
step counter info are used to train the classifier on the server-side. Parameters
of the trained classifier are sent back to the app in PMML format.

C. Classification approach

As most studies focus only on accuracy of recognition
methods we explored a computationally inexpensive approach,
at least in the prediction stage. The computational cost of
training the model is less relevant, since this step is performed
on the server side. Consequently, the chosen classifiers were
DTs due to their inexpensive cost at the prediction stage and
NNs because of the convenience in adapting to new data
points.

Feature extraction was realized with a fixed window size of
1 second and a non-overlapping sliding approach (to reduce
the overhead of an overlapped method).

IV. METHODOLOGY

The experiment has been conducted in two phases. First
accelerometry data have been collected for one user for 4
months using the smartphone Android app. During this initial
phase, periodic tests of classifier training have been performed
to identify a good tradeoff in terms of data to be sent to server
and update frequency of the GPS information to reduce the
impact on battery consumption. This allowed to identify the
final configuration (i.e. GPS sampled every 5 minutes, and 5
seconds of raw accelerometry data sent to the server every 3
minutes).

Two smartphones have been used to evaluate battery con-
sumption in different setup. A Sony Xperia Z3 compact
with mobile network activated and other user apps running
simultaneously, and a Motorola Moto G with mobile network
disabled (i.e. no SIM and only WiFi turned on) and no other
apps running.

The final evaluation has been performed on data collected
from the smartphone with the identified setup on one subject,
acquiring at the same time a manually annotated ground truth.
The goal of this second phase was to evaluate the effect on
accuracy of a weak supervised approach. One mobile has
been used for data collection and kept at a consistent location
(trouser pocket), while the second smartphone has been used
for data labeling. In order to compare the accuracy obtained
with the classifier trained on weak labeled dataset, a ground
truth has been manually collected using an ad-hoc Android
app. The user would annotate the starting of an activity by
pressing the corresponding button as presented in Fig.3. The
dataset comprising the manually labeled ground truth was
collected in free-living conditions, recording 2-8 hours per
day for 10 days for a total of '36 hours. Data on physical
activity was recorded whilst performing normal Activities of
Daily Living (ADLs) such as preparing or having breakfast,
commuting to work, and recording during working hours.

Fig. 3. The Android app use for data labeling.
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The subject would annotate the start of a new activity
in the transition between actions (e.g. ’sitting’ to ’standing’
or ’standing’ to ’walking’). The final ground truth dataset
has been obtained removing 1 second before and after the
transition to reduce the uncertainty inherently introduced by
the manual annotation.

V. RESULTS

The collected dataset was reduced in order to balance the
number of samples for each activity class. This provides a
balanced dataset for validation. The final dataset consisted of
8000 samples (2000 per class) used as training (70%) and test
data (30%). An additional dataset, consisting of 3000 samples,
has been used as validation data. The following results refer
to a NN classifier. Similar values have been obtained also
both with DT and NN based classification methods with the
fully supervised method. In the weakly supervised dataset the
NN performed better than the DT across all classes, appearing
to be more robust to mislabeled samples. The best accuracy
in the weak approach has been measured with a NN with
two hidden layers (14 and 10 neurons). Table I presents the
resulting confusion matrix for the 4 classes (sitting, standing,
walking, transportation). An overall accuracy of 87% has been
obtained with a fully supervised approach compared with a
74% accuracy for the weakly supervised method.

TABLE I
CONFUSION MATRIX FOR THE FOUR CLASSES: C1 ’SITTING’, C2

’STANDING’, C3 ’WALKING’ AND C4 ’TRANSPORTATION’.

Fully Supervised
C1 C2 C3 C4

C1 0.9224 0.0531 0.0041 0.0204
C2 0.0115 0.8269 0.1538 0.0077
C3 0.0343 0.0882 0.8725 0.0049
C4 0.2308 0.0000 0.0384 0.7308

Weakly Supervised
C1 C2 C3 C4

C1 0.7018 0.1754 0.0702 0.0526
C2 0.1558 0.7487 0.0905 0.0050
C3 0.0292 0.1971 0.7591 0.0146
C4 0.1282 0.0513 0.0769 0.7436

The effect of the continuous monitoring, in terms of battery
consumption, has been measured on the two smartphones. The
test with both phones has shown how the approach is quite
efficient and did not cause significant variation (between 1-2%
of battery consumed by the application at the end of the day) in
both smartphones. The average amount of raw data transmitted
and stored on the server for training purposes was '1MB/day,
therefore easily scalable to a higher number of users in terms
of the required bandwidth and storage space. Moreover, in
order to maintain the possibility of experimenting different
features sets, data fragments sent to the server consisted of
raw-data. This can be improved in the future by sending only
the features to the server, either reducing the required data to
be transmitted, or increasing the number of samples to be sent.

The learning curve of the weakly supervised training
showed that 5-6 days of monitoring were enough to converge

Fig. 4. Learning curve for the Fully-Supervised and Weakly Supervised
methods showing Overall accuracy [%] increase rate with a growing number
of samples used as training.

to a satisfactory solution. The comparison, with the fully
supervised approach also shows that the fully supervised
method converges more rapidly as shown in Fig.4.

VI. DISCUSSION

Gathered results show how the weakly supervised approach
impacts the overall accuracy and the training process. In
particular, a larger number of samples is required to train the
model, however, over time the gap in accuracy compared to
a fully supervised approach is reduced. The confusion matrix
highlights how the uncertainty due to the heuristic (i.e. the
presence of mislabeled samples) affects the accuracy. The
comparison between the manually annotated ground truth and
the weak ground truth (obtained using the heuristic), shows
how the uncertainty introduced in the weak ground truth
produces some mislabeling. Nevertheless, the impact of mis-
labeled samples is alleviated over time when a larger number
of samples is collected. Both confusion matrices (weak and
fully supervised) show how instances of the ’transportation’
(C4) class are, in some cases, labeled as ’sitting’ (C1). This is
due to the situation when the user is sitting on a vehicle, but
the vehicle is not moving.

In this experiment all weak labeled samples have been used
for training. The quality of weak annotations generated by
the heuristic could, however, be refined to eliminate some
mislabeled sample artifacts. For instance, through statistical
outliers elimination on samples with the same weak label;
or some unsupervised clustering technique could be explored
to identify isolated clusters generated by the heuristic that
could be ignored. In terms of the approach adopted for
the classification method, while optimal from the perspective
of resource consumption, it may not be ideal purely from
the accuracy perspective. In particular, CNN or other deep
learning methods could be investigated to verify if they provide
improved performance in terms of accuracy with a weakly
labeled dataset.
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VII. CONCLUSIONS

This paper describes work in progress and preliminary
results that can potentially be improved by collecting a larger
dataset. The goal of this experiment was to explore the
viability of a weakly supervised approach to avoid the obstacle
of manual ground truth generation. Although, the experiment
has shown how a weak annotated dataset affects the overall
accuracy, results highlight also how over time the weakly
supervised approach converges towards an acceptable level of
accuracy. The study provides encouraging results, however,
repeating the experiment on a larger set of users is necessary
to provide more representative results. In this first study we
focused on labeling physical activity recognition, however, an
extension will encompass more complex heuristics combining
a user’s diary and indoor localization to generate more refined
activity labeling of ADLs. In conclusion, even though the
experiment has highlighted how the presence of a (at least
partially) manually labeled dataset can be beneficial, the
positive results in terms of resource consumption show how
there is scope for further exploration in the direction of online
personalized training using weak supervision.
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