26 research outputs found

    B-Cell Responses to Sars-Cov-2 mRNA Vaccines

    Get PDF
    Most vaccines against viral pathogens protect through the acquisition of immunological memory from long-lived plasma cells that produce antibodies and memory B cells that can rapidly respond upon an encounter with the pathogen or its variants. The COVID-19 pandemic and rapid deployment of effective vaccines have provided an unprecedented opportunity to study the immune response to a new yet rapidly evolving pathogen. Here we review the scientific literature and our efforts to understand antibody and B-cell responses to SARS-CoV-2 vaccines, the effect of SARS-CoV-2 infection on both primary and secondary immune responses, and how repeated exposures may impact outcomes

    Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency

    Get PDF
    -linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations in IL2RG encoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1

    Maturational characteristics of HIV-specific antibodies in viremic individuals

    No full text
    Despite the rare appearance of potent HIV-neutralizing mAbs in infected individuals requiring prolonged affinity maturation, little is known regarding this process in the majority of viremic individuals. HIV-infected individuals with chronic HIV viremia have elevated numbers of nonconventional tissue-like memory (TLM) B cells that predominate in blood over conventional resting memory (RM) B cells. Accordingly, we investigated affinity maturation in these 2 memory B cell populations. Analysis of IgG-expressing TLM B cells revealed a higher number of cell divisions compared with RM B cells; however, TLM B cells paradoxically displayed significantly lower frequencies of somatic hypermutation (SHM). To assess Ab reactivity in TLM and RM B cells, single-cell cloning was performed on HIV envelope CD4–binding site–sorted (CD4bs-sorted) B cells from 3 individuals with chronic HIV viremia. Several clonal families were present among the 127 cloned recombinant mAbs, with evidence of crosstalk between TLM and RM B cell populations that was largely restricted to non-VH4 families. Despite evidence of common origins, SHM frequencies were significantly decreased in TLM-derived mAbs compared with SHM frequencies in RM-derived mAbs. However, both cell populations had lower frequencies of SHMs than did broadly neutralizing CD4bs–specific mAbs. There was a significant correlation between SHM frequencies and the HIV-neutralizing capacities of the mAbs. Furthermore, HIV neutralization was significantly higher in the RM-derived mAbs compared with that seen in the TLM-derived mAbs, and both SHM frequencies and neutralizing capacity were lowest in TLM-derived mAbs with high polyreactivity. Thus, deficiencies in memory B cells that arise during chronic HIV viremia provide insight into the inadequacy of the Ab response in viremic individuals

    Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy

    No full text
    Abstract Background Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. Methods We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Results Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Conclusion Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy

    Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine

    No full text
    Summary: Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P− B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs
    corecore