536 research outputs found

    Intruders in the Dust: Air-Driven Granular Size Separation

    Full text link
    Using MRI and high-speed video we investigate the motion of a large intruder particle inside a vertically shaken bed of smaller particles. We find a pronounced, non-monotonic density dependence, with both light and heavy intruders moving faster than those whose density is approximately that of the granular bed. For light intruders, we furthermore observe either rising or sinking behavior, depending on intruder starting height, boundary condition and interstitial gas pressure. We map out the phase boundary delineating the rising and sinking regimes. A simple model can account for much of the observed behavior and show how the two regimes are connected by considering pressure gradients across the granular bed during a shaking cycle.Comment: 5 pages, 4 figure

    SARS-CoV-2 update from the World Small Animal Veterinary Association

    Get PDF
    Priorities in veterinary preventive healthcare for dogs and cats under COVID-19 pandemic restrictions: -Routine prophylactic vaccines -Parasite control measures -Other preventive or health monitoring measure

    Three-dimensional shear in granular flow

    Full text link
    The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations we find a transition in the nature of the shear as a characteristic height HH^* is exceeded. Below HH^* there is a central stationary core; above HH^* we observe the onset of additional axial shear associated with torsional failure. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height while the axial width remains narrow and fixed.Comment: 4 pages, 5 figure

    The Effect of Air on Granular Size Separation in a Vibrated Granular Bed

    Full text link
    Using high-speed video and magnetic resonance imaging (MRI) we study the motion of a large sphere in a vertically vibrated bed of smaller grains. As previously reported we find a non-monotonic density dependence of the rise and sink time of the large sphere. We find that this density dependence is solely due to air drag. We investigate in detail how the motion of the intruder sphere is influenced by size of the background particles, initial vertical position in the bed, ambient pressure and convection. We explain our results in the framework of a simple model and find quantitative agreement in key aspects with numerical simulations to the model equations.Comment: 14 pages, 16 figures, submitted to PRE, corrected typos, slight change

    Signatures of granular microstructure in dense shear flows

    Full text link
    Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.Comment: 5 pages, incl. 4 figure

    Discrimination of benign from malignant breast lesions in dense breasts with model-based analysis of regions-of-interest using directional diffusion-weighted images.

    Get PDF
    BACKGROUND: There is an increasing interest in non-contrast-enhanced magnetic resonance imaging (MRI) for detecting and evaluating breast lesions. We present a methodology utilizing lesion core and periphery region of interest (ROI) features derived from directional diffusion-weighted imaging (DWI) data to evaluate performance in discriminating benign from malignant lesions in dense breasts. METHODS: We accrued 55 dense-breast cases with 69 lesions (31 benign; 38 cancer) at a single institution in a prospective study; cases with ROIs exceeding 7.50 cm RESULTS: The region-growing algorithm for 3D lesion model generation improved inter-observer variability over hand drawn ROIs (DSC: 0.66 vs 0.56 (p \u3c 0.001) with substantial agreement (DSC \u3e 0.8) in 46% vs 13% of cases, respectively (p \u3c 0.001)). The overall classifier improved discrimination over mean ADC, (ROC- area under the curve (AUC): 0.85 vs 0.75 and 0.83 vs 0.74 respectively for the two readers). CONCLUSIONS: A classifier generated from directional DWI information using lesion core and lesion periphery information separately can improve lesion discrimination in dense breasts over mean ADC and should be considered for inclusion in computer-aided diagnosis algorithms. Our model-based ROIs could facilitate standardization of breast MRI computer-aided diagnostics (CADx)

    Emerging Techniques in Breast MRI

    Get PDF
    As indicated throughout this chapter, there is a constant effort to move to more sensitive, specific, and quantitative methods for characterizing breast tissue via magnetic resonance imaging (MRI). In the present chapter, we focus on six emerging techniques that seek to quantitatively interrogate the physiological and biochemical properties of the breast. At the physiological scale, we present an overview of ultrafast dynamic contrast-enhanced MRI and magnetic resonance elastography which provide remarkable insights into the vascular and mechanical properties of tissue, respectively. Moving to the biochemical scale, magnetization transfer, chemical exchange saturation transfer, and spectroscopy (both “conventional” and hyperpolarized) methods all provide unique, noninvasive, insights into tumor metabolism. Given the breadth and depth of information that can be obtained in a single MRI session, methods of data synthesis and interpretation must also be developed. Thus, we conclude the chapter with an introduction to two very different, though complementary, methods of data analysis: (1) radiomics and habitat imaging, and (2) mechanism-based mathematical modeling

    Prostate Volumes Derived From MRI and Volume-Adjusted Serum Prostate-Specific Antigen: Correlation With Gleason Score of Prostate Cancer

    Get PDF
    The purpose of this article is to study relationships between MRI-based prostate volume and volume-adjusted serum prostate-specific antigen (PSA) concentration estimates and prostate cancer Gleason score
    corecore