219 research outputs found

    PROBING BIOMECHANICAL PROPERTIES OF SINGLE MOLECULE SYSTEMS USING OPTICAL TWEEZERS

    Get PDF
    Single molecule techniques have provided novel mechanistic insights on biological processes such as protein folding, transcription, and motor protein movement. Using single molecule methods, the distribution of individual molecular behavior is directly measured, which cannot be obtained using conventional bulk approaches. In this study, custom-built optical tweezers with sub-pN force resolution were used to probe the dynamic behavior of DNA:cationic carrier complex. Two histidine-lysine (HK) based polymers (H3K4b vs H3KG4b) were used to compare their condensation behaviors at the single molecular level. The difference between the two HK polymers at the single molecule level may have a significant implication as to why H3KG4b shows much higher gene delivery efficiency than H3K4b. The optical tweezers were also used to probe the unfolding processes of a fragment of F1 RNA. This can be used to characterize secondary structures in RNA, such as hairpins and pseudoknots

    Multifragmentation in Collisions of 4.4gev-Deuterons with Gold Target

    Full text link
    The relative velocity correlation function of pairs of intermediate mass fragments has been studied for d+Au collitions at 4.4 GeV. Experimental correlation functions are compared to that obtained by multibody Coulomb trajectory calculations under the assumption of various decay timees of the fragmenting system. The combined approach with the empirically modified intranuclear cascade code followed by the statistical multifragmentation model was used to generate the starting conditions for these calculations. The fragment emossion time is found to be less than 40 fm/c.Comment: Accepted for publication in Bulletin of the Russian Academy of Sciences. Physic

    Multifragmentation and nuclear phase transitions (liquid-fog and liquid-gas)

    Full text link
    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition. The charge distributions of the intermediate mass fragments produced in p(3.6 GeV) + Au and p(8.1 GeV) + Au collisions are analyzed within the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition Tc as a free parameter. The analysis presented here provides strong support for a value of Tc > 15 MeV.Comment: 4 pages, 2 figures, Submittet to Proc. of NN2003 to be published in Nucl. Phys.

    Effect of an electric field on superfluid helium scintillation produced by alpha-particle sources

    Full text link
    We report a study of the intensity and time dependence of scintillation produced by weak alpha particle sources in superfluid helium in the presence of an electric field (0 - 45 kV/cm) in the temperature range of 0.2 K to 1.1 K at the saturated vapor pressure. Both the prompt and the delayed components of the scintillation exhibit a reduction in intensity with the application of an electric field. The reduction in the intensity of the prompt component is well approximated by a linear dependence on the electric field strength with a reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of columnar recombination, this electric field dependence leads to the conclusion that roughly 40% of the scintillation results from species formed from atoms originally promoted to excited states and 60% from excimers created by ionization and subsequent recombination with the charges initially having a cylindrical Gaussian distribution about the alpha track of 60 nm radius. The intensity of the delayed component of the scintillation has a stronger dependence on the electric field strength and on temperature. The implications of these data on the mechanisms affecting scintillation in liquid helium are discussed.Comment: 17 pages, 23 figure

    Fusicoccin Counteracts the Toxic Effect of Cadmium on the Growth of Maize Coleoptile Segments

    Get PDF
    The effects of cadmium (Cd; 0.1–1000 μM) and fusicoccin (FC) on growth, Cd2+ content, and membrane potential (Em) in maize coleoptile segments were studied. In addition, the Em changes and accumulation of Cd and calcium (Ca) in coleoptile segments treated with Cd2+ combined with 1 μM FC or 30 mM tetraethylammonium (TEA) chloride (K+-channel blocker) were also determined. In this study, the effects of Ca2+-channel blockers [lanthanum (La) and verapamil (Ver)] on growth and content of Cd2+ and Ca2+ in coleoptile segments were also investigated. It was found that Cd at high concentrations (100 and 1000 μM) significantly inhibited endogenous growth of coleoptile segments and simultaneously measured proton extrusion. FC combined with Cd2+ counteracted the toxic effect of Cd2+ on endogenous growth and significantly decreased Cd2+ content (not the case for Cd2+ at the highest concentration) in coleoptile segments. Addition of Cd to the control medium caused depolarization of Em, the extent of which was dependent on Cd concentration and time of treatment with Cd2+. Hyperpolarization of Em induced by FC was suppressed in the presence of Cd2+ at 1000 μM but not Cd2+ at 100 μM. It was also found that treatment of maize coleoptile segments with 30 mM TEA chloride caused hyperpolarization of Em and decreased Cd2+ content in coleoptile segments, suggesting that, in the same way as for FC, accumulation of Cd2+ was dependent on plasma membrane (PM) hyperpolarization. Similar to FC, TEA chloride also decreased Ca2+ content in coleoptile segments. La and Ver combined with Cd2+ (100 μM) significantly decreased Cd content in maize coleoptile segments, but only La completely abolished the toxic effect of Cd2+ on endogenous growth and growth in the presence of FC. Taken together, these results suggest that the mechanism by which FC counteracts the toxic effect of Cd2+ (except at 1000 μM Cd2+) on the growth of maize coleoptile segments involves both stimulation of PM H+-ATPase activity by FC as well as Cd2+-permeable, voltage-dependent Ca channels, which are blocked by FC and TEA chloride-induced PM hyperpolarization

    The Ames Vertical Gun Range

    Get PDF
    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal

    Chemometric approach to characterization of the selected grape seed oils based on their fatty acids composition and FTIR spectroscopy

    Get PDF
    Addressing the issues arising from the production and trade of low-quality foods necessitates developing new quality control methods. Cooking oils, especially those produced from the grape seeds, are an example of food products that often suffer from questionable quality due to various adulterations and low-quality fruits used for their production. Among many methods allowing for fast and efficient food quality control, the combination of experimental and advanced mathematical approaches seems most reliable. In this work a method for grape seed oils compositional characterization based on the infrared (FTIR) spectroscopy and fatty acids profile is reported. Also, the relevant parameters of oils are characterized using a combination of standard techniques such as the Principal Component Analysis, k-Means, and Gaussian Mixture Model (GMM) fitting parameters. Two different approaches to perform unsupervised clustering using GMM were investigated. The first approach relies on the profile of fatty acids, while the second is FT-IR spectroscopy-based. The GMM fitting parameters in both approaches were compared. The results obtained from both approaches are consistent and complementary and provide the tools to address the characterization and clustering issues in grape seed oils.O
    corecore