27 research outputs found
Initial Conditions for Vector Inflation
Recently, a model of inflation using non-minimally coupled massive vector
fields has been proposed. For a particular choice of non-minimal coupling
parameter and for a flat FRW model, the model is reduced to the model of
chaotic inflation with massive scalar field. We study the effect of non-zero
curvature of the universe on the onset of vector inflation. We find that in a
curved universe the dynamics of vector inflation can be different from chaotic
inflation, and the fraction of the initial conditions leading to inflationary
solutions is reduced compared with the chaotic inflation case.Comment: 12 pages, 5 figures, version to be published in JCA
Noether Symmetry Approach in "Cosmic Triad" Vector Field Scenario
To realize the accelerations in the early and late periods of our universe,
we need to specify potentials for the dominant fields. In this paper, by using
the Noether symmetry approach, we try to find suitable potentials in the
"cosmic triad" vector field scenario. Because the equation of state parameter
of dark energy has been constrained in the range of by observations, we derive the Noether conditions for the vector field
in quintessence, phantom and quintom models, respectively. In the first two
cases, constant potential solutions have been obtained. What is more, a fast
decaying point-like solution with power-law potential is also found for the
vector field in quintessence model. For the quintom case, we find an
interesting constraint on the field potentials,
where and are constants related to the Noether symmetry.Comment: 15 pages, no figures, accepted by Classical and Quantum Gravity
Primordial statistical anisotropy generated at the end of inflation
We present a new mechanism for generating primordial statistical anisotropy
of curvature perturbations. We introduce a vector field which has a non-minimal
kinetic term and couples with a waterfall field in hybrid inflation model. In
such a system, the vector field gives fluctuations of the end of inflation and
hence induces a subcomponent of curvature perturbations. Since the vector has a
preferred direction, the statistical anisotropy could appear in the
fluctuations. We present the explicit formula for the statistical anisotropy in
the primordial power spectrum and the bispectrum of curvature perturbations.
Interestingly, there is the possibility that the statistical anisotropy does
not appear in the power spectrum but does appear in the bispectrum. We also
find that the statistical anisotropy provides the shape dependence to the
bispectrum.Comment: 9 pages, This version supersedes the JCAP version. Minor revision
Issues on Generating Primordial Anisotropies at the End of Inflation
We revisit the idea of generating primordial anisotropies at the end of
inflation in models of inflation with gauge fields. To be specific we consider
the charged hybrid inflation model where the waterfall field is charged under a
U(1) gauge field so the surface of end of inflation is controlled both by
inflaton and the gauge fields. Using delta N formalism properly we find that
the anisotropies generated at the end of inflation from the gauge field
fluctuations are exponentially suppressed on cosmological scales. This is
because the gauge field evolves exponentially during inflation while in order
to generate appreciable anisotropies at the end of inflation the spectator
gauge field has to be frozen and scale invariant. We argue that this is a
generic feature, that is, one can not generate observable anisotropies at the
end of inflation within an FRW background.Comment: V3: new references added, JCAP published versio
On cosmic inflation in vector field theories
We investigate the longitudinal ghost issue in Abelian vector inflation. It
turns out that, within the class of Lorentz-invariant vector field theories
with three degrees of freedom and without any extra (scalar) fields, the
possibilities are essentially exhausted by the classical solution due to Larry
Ford with an extremely flat potential which doesn't feel the fast roll of its
argument. And, moreover, one needs to fulfil an extra condition on that
potential in order to avoid severe gradient instability. At the same time, some
Lorentz-violating modifications are worth to be explored.Comment: 10 pages; a few minor typos corrected; published versio
Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation
We study higher curvature corrections to the scalar spectral index, the
tensor spectral index, the tensor-to-scalar ratio, and the polarization of
gravitational waves. We find that the higher curvature corrections can not be
negligible in the dynamics of the scalar field, although they are energetically
negligible. Indeed, it turns out that the tensor-to-scalar ratio could be
enhanced and the tensor spectral index could be blue due to the Gauss-Bonnet
term. We estimate the degree of circular polarization of gravitational waves
generated during the slow-roll inflation. We argue that the circular
polarization can be observable with the help both of the Gauss-Bonnet and
parity violating terms. We also present several examples to reveal
observational implications of higher curvature corrections for chaotic
inflationary models.Comment: 12 pages, 4 figure
Statistical Anisotropy from Anisotropic Inflation
We review an inflationary scenario with the anisotropic expansion rate. An
anisotropic inflationary universe can be realized by a vector field coupled
with an inflaton, which can be regarded as a counter example to the cosmic
no-hair conjecture. We show generality of anisotropic inflation and derive a
universal property. We formulate cosmological perturbation theory in
anisotropic inflation. Using the formalism, we show anisotropic inflation gives
rise to the statistical anisotropy in primordial fluctuations. We also explain
a method to test anisotropic inflation using the cosmic microwave background
radiation (CMB).Comment: 32 pages, 5 figures, invited review for CQG, published versio
Where galaxies really come from.
The fundamental paradox of the incompatibility of the observed large-scale uniformity of the Universe with the fact that the age of the Universe is finite is overcome by the introduction of an initial period of superluminal expansion of space, called cosmic inflation. Inflation can also produce the small deviations from uniformity needed for the formation of structures in the Universe such as galaxies. This is achieved by the conjunction of inflation with the quantum vacuum, through the so-called particle production process. This mechanism is explained and linked with Hawking radiation of black holes. The nature of the particles involved is discussed and the case of using massive vector boson fields instead of scalar fields is presented, with emphasis on its distinct observational signatures. Finally, a particular implementation of these ideas is included, which can link the formation of galaxies, the standard model vector bosons and the observed galactic magnetic fields
Inflationary buildup of a vector field condensate and its cosmological consequences
Light vector fields during inflation obtain a superhorizon perturbation spectrum when their conformal invariance is appropriately broken. Such perturbations, by means of some suitable mechanism (e.g. the vector curvaton mechanism), can contribute to the curvature perturbation in the Universe and produce characteristic signals, such as statistical anisotropy, on the microwave sky, most recently surveyed by the Planck satellite mission. The magnitude of such characteristic features crucially depends on the magnitude of the vector condensate generated during inflation. However, in the vast majority of the literature the expectation value of this condensate has so-far been taken as a free parameter, lacking a definite prediction or a physically motivated estimate. In this paper, we study the stochastic evolution of the vector condensate and obtain an estimate for its magnitude. Our study is mainly focused in the supergravity inspired case when the kinetic function and mass of the vector boson is time-varying during inflation, but other cases are also explored such as a parity violating axial theory or a non-minimal coupling between the vector field and gravity. As an example, we apply our findings in the context of the vector curvaton mechanism and contrast our results with current observations