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Statistical Anisotropy from Anisotropic Inflation

Jiro Soda

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

E-mail: jiro@tap.scphys.kyoto-u.ac.jp

Abstract. We review an inflationary scenario with the anisotropic expansion rate.

An anisotropic inflationary universe can be realized by a vector field coupled with

an inflaton, which can be regarded as a counter example to the cosmic no-hair

conjecture. We show generality of anisotropic inflation and derive a universal property.

We formulate cosmological perturbation theory in anisotropic inflation. Using the

formalism, we show anisotropic inflation gives rise to the statistical anisotropy in

primordial fluctuations. We also explain a method to test anisotropic inflation using

the cosmic microwave background radiation (CMB).
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1. Introduction

It is well known that inflation elegantly solves the horizon and flatness problems.

Moreover, inflation accounts for the origin of the large scale structure of the universe.

The point in an inflationary scenario is that the exponential expansion of the universe

erases any classical memory, which is often referred to as the cosmic no-hair conjecture.

Because of this feature, quantum fluctuations are responsible for the origin of the large

scale structure of the universe. Remarkably, the nature of the primordial fluctuations is

understood by symmetry in inflation.

• homogeneity

First of all, we have to assume the initial homogeneity. Indeed, inflation does not

commence with strong inhomogeneous initial conditions ( There is a possibility that

this symmetry breaks down [1, 2, 3].).

• shift symmetry

In order to have slow-roll inflation, we need a sufficiently flat potential. Hence, we

have a shift symmetry in field space, ϕ(x) → ϕ(x) + ϕ̄. Here, ϕ̄ is a constant.

• temporal de Sitter symmetry

The metric for de Sitter spacetime reads

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) , (1.1)

where the Hubble parameter H is constant. It is easy to find isometry

t → t+ t̄ , xi → e−Ht̄xi , xi = {x, y, z} ,

where t̄ is a constant.

• spatial de Sitter symmetry

Once inflation occurs, the cosmic no-hair conjecture tells us that the universe will

be isotropized in a few Hubble expansion.

Here, we assumed single field inflation with a standard kinetic term.

The above symmetry determines the nature of primordial fluctuations. In general,

we need n-point correlation functions to characterize the statistical nature of primordial

fluctuations. However, the shift symmetry in field space implies suppression of

nonlinearity and hence the Gaussian statistics of fluctuations. Thus, we need only

2-point functions. As an example, we take curvature perturbations ζ. In a Fourier

space, we have the power spectrum

< ζ(k1) , ζ(k2) >= P (k1 ,k2) ,

where k is the wavenumber vector. Moreover, the homogeneity constrains the power

spectrum to be

< ζ(k1) , ζ(k2) >= δ(k1 + k2)P (k1).
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Here, the delta function stems from the “momentum” conservation. The spatial de

Sitter symmetry further constrains the power spectrum as

< ζ(k1) , ζ(k2) >= δ(k1 + k2)P (k1 = |k1|).

Namely, the direction dependence is forbidden by the rotational symmetry. Finaly, the

temporal de Sitter symmetry yields a scale invariant power spectrum

P (k) = const.

because of the scale invariance of spatial coordinates. These predictions are robust and

universal in inflationary scenarios. In fact, the above predictions have been confirmed

by CMB observations [4].

However, precision cosmology forces us to look at fine structure of the primordial

fluctuations. In fact, since the universe is not exactly de Sitter, there exists violation of

the temporal de Sitter symmetry, which leads to a slight tilt of the power spectrum. As

the deviation from de Sitter expansion can be characterized by the slow roll parameter,

the tilt should be of the order of the slow roll parameter. Similarly, we have violation

of the shift symmetry, which leads to non-Gaussianity characterized by the slow roll

parameter [5]. Along this line of thought, it is natural to expect violation of the spatial

de Sitter symmetry, which would lead to the statistical anisotropy.

From the observational point of view, a lot of anomalies indicating the statistical

anisotropy are reported although its statistical significance is uncertain ( see [6] and

references therein). Motivated by those observations, there are many theoretical

proposals to realize the statistical anisotropy [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22]. In these works, however, a consistent theoretical framework including

the backreaction of vector fields seems to be obscure. As another line of research, there

exist challenges to the cosmic no-hair conjecture [23, 24, 25, 26, 27, 28, 29, 30, 31]. If

we can evade the cosmic no-hair conjecture, we would have the statistical anisotropy.

Unfortunately, it turns out that these models suffer from either the instability, or a fine

tuning problem, or a naturalness problem [32]. Recently, however, stable anisotropic

inflation models are found in the context of supergravity, which gives rise to a counter

example to the cosmic no-hair conjecture [33].

In this review, we explain how anisotropic inflation can be realized in supergravity

and show it implies violation of spatial de Sitter symmetry and hence leads to the

statistical anisotropy in primordial fluctuations. Recall that the bosonic sector of the

supergravity action is given by

S =
∫

d4x
√
−g

[
1

2κ2
R−Gīj∂

µϕ̄ī∂µϕ
j − eκ

2K
(
GījD̄iW̄DjW − 3κ2W̄W

)
−1

4
f 2
ab(ϕ)F

aµνF b
µν + · · ·

]
, (1.2)

where Gīj = ∂K/∂ϕī∂ϕj, DiW = ∂W/∂ϕi + κ2(∂K/∂ϕi)W , K(ϕ, ϕ̄) and W (ϕ) are the

Kaler potential and the super potential, respectively. There is also a kinetic term for
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gauge fields with gauge kinetic functions fab. The cosmological role of K and W are well

discussed so far. However, the gauge kinetic function has been overlooked in cosmology,

at least in the context of inflationary scenarios. In this review, we clarify the role of the

gauge kinetic functions in inflation.

Let us summarize main results here. First of all, we find anisotropic inflation is an

attractor in supergravity with a wide rage of gauge kinetic functions. The metric during

inflation approximately reads

ds2 = −dt2 + e2Ht
[
e−4Σtdx2 + e2Σt

(
dy2 + dz2

)]
, (1.3)

where H and Σ describe the average expansion rate and the anisotropic expansion rate,

respectively. The degree of the anisotropy Σ/H is universally given by the following

formula

Σ

H
=

1

3
IϵH , ϵH = − Ḣ

H2
, (1.4)

where I is the model parameter taking values 0 ≤ I ≤ 1. The point is that the degree

of anisotropy at most of the order of the slow-roll parameter ϵH . In this scenario, we

have the statistical anisotropy of the form [34]

P (k) = P (k)
[
1 + g∗ sin

2 θ
]
, (1.5)

where P (k) is the isotropic part of the power spectrum P (k) and θ is the angle between

the preferred direction and the wavenumber vector of fluctuations. The amplitude of

anisotropy g∗ can be calculated using the standard perturbation theory. The anisotropy

in curvature perturbations is given by

gs = 24IN2(k) (1.6)

and that in gravitational waves reads

gt = 6IϵHN
2(k) . (1.7)

Here, I is a model parameter appeared in the anisotropy formula (1.4) and N(k) is

the e-folding number from the horizon exit of fluctuations to the end of inflation.

Remarkably, there exists a difference between the anisotropy in curvature and tensor

perturbations. There is also the cross-correlation between the curvature perturbations

ζ and gravitational waves h given by

rc =
< ζh >

< ζζ >
= −24

√
2IϵHN

2(k). (1.8)

We find the consistency relations between these observables

4gt = ϵH gs , rc = −
√
2ϵHgs . (1.9)

This allows us to give a model independent test of anisotropic inflation. Of course, we

can use each observables to constrain gauge kinetic functions. Indeed, we give the first

cosmological constraint on the gauge kinetic function:

I <
0.3

24N2(k)
, (1.10)
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where we used the result in [35]. Note that I is determined once the gauge kinetic

functions are given.

The organization of the paper is as follows. In section II, we show power-law

inflation is not necessarily an attractor in the presence of gauge kinetic function. Instead,

we show anisotropic inflation could become an attractor for a wide range of parameters

in models. In section III, we argue the generality of the model and derive a universal

relation. In section IV, we develop cosmological perturbation theory in anisotropic

inflation and calculate the statistical anisotropy in primordial fluctuations. In section

V, we discuss observational test of anisotropic inflation using the CMB. The final section

is devoted to summary and future prospects.

2. Primordial Magnetic Fields, Backreaction, and Anisotropic Inflation

In this section, we first recall a standard mechanism for generating primordial magnetic

fields during inflation. There, a vector field coupled to an inflaton is introduced. Here,

we consider a simple model with exponential potential and gauge kinetic functions. Then

we obtain exact power-law inflation. It is possible to generate primordial magnetic fields

in this set up. For many cases, the backreaction of the vector field cannnot be negligible.

Indeed, it turns out that the backreaction yields a new type of cosmological solutions,

namely, exact anisotropic power-law inflation.

2.1. Power-law Inflation and Primordial Magnetic Fields

Let us start with the action

S =
∫
d4x

√
−g

[
1

2κ2
R− 1

2
(∂µϕ) (∂

µϕ)− V (ϕ)
]
, (2.1)

where κ2 is the reduced gravitational constant, g is the determinant of the metric, R is

the Ricci scalar, V (ϕ) is a potential for an inflaton ϕ. In order to find exact solutions,

we take the exponential potential

V (ϕ) = V0e
λκϕ , (2.2)

where V0 and λ are parameters. It is natural to take the isotropic metric

ds2 = −dt2 + e2α(t)
[
dx2 + dy2 + dz2

]
, (2.3)

where eα is the scale factor. Let us seek isotropic power-law solutions by putting the

ansatz

α = ζ log t , κϕ = ξ log t+ ϕ0 . (2.4)

Then, we obtain the solutions

ζ =
2

λ2
, ξ = −2

λ
, κ2V0e

λκϕ0 =
2(6− λ2)

λ4
. (2.5)

In this case, we have the spacetime

ds2 = −dt2 + t4/λ
2
(
dx2 + dy2 + dz2

)
. (2.6)
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Thus, for λ ≪ 1, we have power-law inflation.

Now, we consider primordial magnetic fields in this inflationary background. We

introduce a vector field Aµ whose kinetic term is coupled to the inflaton field ϕ

S =
∫
d4x

√
−g

[
− 1

4
f(ϕ)2FµνF

µν
]
, (2.7)

where Fµν is the field strength of the vector field defined by Fµν = ∂µAν − ∂νAµ, and

f(ϕ) is a coupling function of the vector field. We emphasize that this kind of model is

quite natural in the context of the supergravity [36]. Many years ago, Ratra considered

the exponential gauge kinetic function [37]

f(ϕ) = f0e
ρκϕ (2.8)

and concluded that the primordial magnetic fields can be generated due to the gauge

kinetic function. The result implies there exists a contribution of the vector field

to the energy density in the universe. In the subsequent two subsections, we would

like to show the backreaction of the vector field leads to the anisotropic inflationary

power-law solutions and prove that anisotropic inflation is actually an attractor [38].

Thus, the models producing primordial magnetic fields naturally lead to anisotropic

inflation [39, 40]. Here, we should emphasize that the existence of anisotropic inflation

attractor shows that the backreaction from the vector field does not necessarily destroy

inflation [39], as is often assumed in literature [41].

2.2. Backreaction and Anisotropic Power-law Inflation

Now, we take into account the backreaction of the vector field. We can expect interesting

effects due to the backreaction because the coupling of the vector field to the inflaton

produces an effective potential for the inflaton [42, 43]. Indeed, we will see that there

exist exact anisotropic solutions [38] on the contrary to the expectation from the cosmic

no-hair theorem [44, 45, 46, 47].

The action we should consider is given by

S =
∫
d4x

√
−g

[
1

2κ2
R− 1

2
(∂µϕ) (∂

µϕ)− V (ϕ)− 1

4
f(ϕ)2FµνF

µν
]
,(2.9)

where V (ϕ) and f(ϕ) are given by (2.2) and (2.8), respectively. Without loosing the

generality, one can take x-axis in the direction of the vector field. Using the gauge

invariance, we can express the vector field as

Aµdx
µ = v(t)dx . (2.10)

Thus, there exists the rotational symmetry in the y-z plane. Given this configuration,

it is convenient to parameterize the metric as follows:

ds2 = −N (t)2dt2 + e2α(t)
[
e−4σ(t)dx2 + e2σ(t)(e2

√
3σ−(t)dy2 + e−2

√
3σ−(t)dz2)

]
, (2.11)

where eα, σ and σ− are an isotropic scale factor and spatial shears, respectively. Here,

the lapse function N is introduced to obtain the Hamiltonian constraint. With the

above ansatz, the action becomes

S =
∫
d4x

1

N
e3α

[
3

κ2
(−α̇2 + σ̇2 + σ̇2

−) +
1

2
ϕ̇2 −N 2V (ϕ) +

1

2
f(ϕ)2v̇2e−2α(t)+4σ(t)

]
,(2.12)
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where an overdot denotes a derivative with respect to the physical time t. First, its

variation with respect to σ− yields

σ̈− = −3α̇σ̇− . (2.13)

This gives σ̇− ∝ e−3α, hence, the anisotropy in the y-z plane rapidly decays as the

universe expands. Hereafter, for simplicity, we assume σ− = 0 and set the metric to be

ds2 = −dt2 + e2α(t)
[
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

]
. (2.14)

Next, the equation of motion for v is easily solved as

v̇ = f(ϕ)−2e−α−4σpA , (2.15)

where pA is a constant of integration. Taking the variation of the action with respect to

N , α, σ and ϕ and substituting the solution (2.15) into them, we obtain the following

basic equations:

α̇2 = σ̇2 +
κ2

3

[
1

2
ϕ̇2 + V (ϕ) +

p2A
2
f(ϕ)−2e−4α−4σ

]
, (2.16)

α̈ = − 3α̇2 + κ2V (ϕ) +
κ2p2A
6

f(ϕ)−2e−4α−4σ , (2.17)

σ̈ = − 3α̇σ̇ +
κ2p2A
3

f(ϕ)−2e−4α−4σ , (2.18)

ϕ̈ = − 3α̇ϕ̇− Vϕ + p2Af(ϕ)
−3fϕe

−4α−4σ , (2.19)

where the subscript in Vϕ denotes a derivative with respect to ϕ. Let us check whether

inflation occurs in this model. Using Eqs. (2.16) and (2.17), the equation for acceleration

of the cosmic expansion is given by

(eα)··

eα
= α̈+ α̇2 = −2σ̇2 − κ2

3
ϕ̇2 +

κ2

3

[
V − p2A

2
f−2e−4α−4σ

]
. (2.20)

We see that the potential energy of the inflaton needs to be dominant and the energy

density of the vector field

ρv ≡
1

2
p2Af(ϕ)

−2e−4α−4σ (2.21)

and the shear Σ ≡ σ̇ should be subdominant for inflation to occur.

In order to find exact solutions, we take the power-law ansatz

α = ζ log t , σ = η log t , κϕ = ξ log t+ ϕ0 . (2.22)

From the hamiltonian constraint equation (2.16), we get two relations

λξ = −2 , ρξ + 2ζ + 2η = 1 (2.23)

to have the same time dependence for each term. The latter relation is necessary only

in the non-trivial vector case, pA ̸= 0. Then, for the amplitudes to be balanced, we need

−ζ2 + η2 +
1

6
ξ2 +

1

3
u+

1

6
w = 0 , (2.24)

where we have defined variables

u = κ2V0e
λϕ0 , w = κ2p2Af

−2
0 e−2ρϕ0 . (2.25)
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The equation for the scale factor (2.17) under Eq. (2.23) yields

−ζ + 3ζ2 − u− 1

6
w = 0 . (2.26)

Similarly, the equation for the anisotropy (2.18) gives

−η + 3ζη − 1

3
w = 0 . (2.27)

Finally, from the equation for the scalar (2.19), we obtain

−ξ + 3ζξ + λu− ρw = 0 . (2.28)

Using Eqs. (2.23), (2.26) and (2.27), we can solve u and w as

u =
9

2
ζ2 − 9

4
ζ − 3ρ

2λ
ζ +

1

4
+

ρ

2λ
, (2.29)

w = − 9ζ2 +
15

2
ζ +

9ρ

λ
ζ − 3

2
− 3ρ

λ
. (2.30)

Substituting these results into Eq. (2.28), we obtain

(3ζ − 1)
[
6λ (λ+ 2ρ) ζ −

(
λ2 + 8ρλ+ 12ρ2 + 8

)]
= 0 . (2.31)

In the case of ζ = 1/3, we have u = w = 0. Hence, it is not our desired solution. Thus,

we have to choose

ζ =
λ2 + 8ρλ+ 12ρ2 + 8

6λ(λ+ 2ρ)
. (2.32)

Substituting this result into Eq. (2.26), we obtain

η =
λ2 + 2ρλ− 4

3λ(λ+ 2ρ)
. (2.33)

This clearly shows the existence of the anisotropy in the expansion. From Eq. (2.23),

we have

ξ = −2

λ
. (2.34)

Finally, Eqs. (2.29) and (2.30) reduce to

u =
(ρλ+ 2ρ2 + 2)(−λ2 + 4ρλ+ 12ρ2 + 8)

2λ2(λ+ 2ρ)2
(2.35)

and

w =
(λ2 + 2ρλ− 4)(−λ2 + 4ρλ+ 12ρ2 + 8)

2λ2(λ+ 2ρ)2
. (2.36)

Note that Eq. (2.24) is automatically satisfied. Thus, we have obtained anisotropic

power-law solutions.

Recalling the definition (2.22), we see ζ ≫ 1 is necessary for inflation. From the

solution (2.32), it turns out that this requirement can be achieved by assuming λ ≪ ρ.

For these cases, u is always positive. Since w should be also positive, we have the

condition

λ2 + 2ρλ > 4 . (2.37)
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Hence, ρ must be much larger than one. Now, the spacetime reads

ds2 = −dt2 + t2ζ−4ηdx2 + t2ζ+2η
(
dy2 + dz2

)
. (2.38)

The average expansion rate is determined by ζ and the average slow roll parameter is

given by

ϵH ≡ − Ḣ

H2
=

6λ(λ+ 2ρ)

λ2 + 8ρλ+ 12ρ2 + 8
, (2.39)

where we have defined H = α̇. In the limit λ ≪ 1 and ρ ≫ 1, this reduces to ϵH = λ/ρ.

Now, the anisotropy is characterized by

Σ

H
≡ σ̇

α̇
=

2(λ2 + 2ρλ− 4)

λ2 + 8ρλ+ 12ρ2 + 8
. (2.40)

From Eq. (2.39) and (2.40), we obtain a relation

Σ

H
=

1

3
IϵH , I =

λ2 + 2ρλ− 4

λ2 + 2ρλ
. (2.41)

It is possible to write I as

I =
c− 1

c
, c =

λ2 + 2ρλ

4
. (2.42)

Then, it is apparent I takes a value in the range 0 < I < 1. We see the anisotropy is

positive and proportional to the slow roll parameter ϵH .

Although the anisotropy is always small, it persists during inflation. Clearly these

exact solutions give rise to counter examples to the cosmic no-hair conjecture. We

should note that the cosmological constant is assumed in the cosmic no-hair theorem

presented by Wald [44]. In the case of isolated vacuum energy, the inflaton can mimic the

cosmological constant. However, in the presence of the non-trivial coupling between the

inflaton and the vector field, the cosmic no-hair theorem cannot be applicable anymore.

2.3. Anisotropic Inflation as an Attractor

In the previous subsections, we found both isotropic and anisotropic power-law solutions

exist. In this subsection, we will investigate the phase space structure. Then, we will

see which one is dynamically selected.

Let us use e-folding number as a time coordinate dα = α̇dt. It is convenient to

define dimensionless variables

X =
σ̇

α̇
, Y = κ

ϕ̇

α̇
, Z = κf(ϕ)e−α+2σ v̇

α̇
. (2.43)

With these definitions, we can write the hamiltonian constraint equation as

−κ2 V

α̇2
= 3(X2 − 1) +

1

2
Y 2 +

1

2
Z2 . (2.44)

Since we are considering a positive potential, we have the inequality

3(X2 − 1) +
1

2
Y 2 +

1

2
Z2 < 0 . (2.45)
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Using the hamiltonian constraint (2.44), we can eliminate ϕ from the equations of

motion. Thus, the equations of motion can be reduced to the autonomous form:

dX

dα
=

1

3
Z2(X + 1) +X

{
3(X2 − 1) +

1

2
Y 2
}
, (2.46)

dY

dα
= (Y + λ)

{
3(X2 − 1) +

1

2
Y 2
}
+

1

3
Y Z2 +

(
ρ+

λ

2

)
Z2 , (2.47)

dZ

dα
= Z

[
3(X2 − 1) +

1

2
Y 2 − ρY + 1− 2X +

1

3
Z2
]
. (2.48)

Therefore, we have a 3-dimensional space with a constraint (2.45). A fixed point in this

phase space is defined by dX/dα = dY/dα = dZ/dα = 0.

First, we seek the isotropic fixed point X = 0. From Eq. (2.46), we see Z = 0.

The remaining equation (2.47) yields Y = −λ or Y 2 = 6. The latter solution does not

satisfy the constraint (2.45). Thus, the isotropic fixed point becomes

(X, Y, Z) = (0,−λ, 0) . (2.49)

This fixed point corresponds to the isotropic power-law solution (2.6). Indeed, one can

check that the solution (2.5) leads to the above fixed point.

Apparently, Z = 0 and 6X2 + Y 2 = 6 give a fixed curve. However, this contradicts

the constraint (2.45).

Now, let us find an anisotropic fixed point. From Eqs. (2.46) and (2.47), we have

Y =

(
3ρ+

λ

2

)
X − λ . (2.50)

Eq. (2.46) gives

Z2 = − 3X

X + 1

[
3(X2 − 1) +

1

2
Y 2
]
. (2.51)

Using the above results in Eq. (2.48), we have

(X − 2)
[(
λ2 + 8ρλ+ 12ρ2 + 8

)
X − 2

(
λ2 + 2ρλ− 4

)]
= 0 . (2.52)

The solution X = 2 does not make sense because it implies Z2 = −18 − 36ρ2 < 0 by

Eqs. (2.50) and (2.51). Thus, an anisotropic fixed point is expressed by

X =
2 (λ2 + 2ρλ− 4)

λ2 + 8ρλ+ 12ρ2 + 8
. (2.53)

Substituting this result into Eq. (2.50), we obtain

Y = − 12 (λ+ 2ρ)

λ2 + 8ρλ+ 12ρ2 + 8
. (2.54)

Eq. (2.51) yields

Z2 =
18 (λ2 + 2ρλ− 4) (−λ2 + 4ρλ+ 12ρ2 + 8)

(λ2 + 8ρλ+ 12ρ2 + 8)2
. (2.55)

Note that from the last equation, we find that λ2 + 2ρλ > 4 is required for this fixed

point to exist under inflation λ ≪ ρ. It is not difficult to confirm that this fixed point

corresponds to the anisotropic power-law solution (2.38).
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Next, we examine the linear stability of the fixed points. The linearized equations

for Eqs. (2.46), (2.47), (2.48) are given by

dδX

dα
=
(
1

3
Z2 + 9X2 +

1

2
Y 2 − 3

)
δX +XY δY +

2

3
(X + 1)ZδZ , (2.56)

dδY

dα
= 6X (Y + λ) δX +

{
3
(
X2 − 1

)
+

1

2
Y 2 + Y (Y + λ) +

1

3
Z2
}
δY

+
(
2

3
Y + 2ρ+ λ

)
ZδZ , (2.57)

dδZ

dα
= 2(3X − 1)ZδX + (Y − ρ)ZδY

+
(
3X2 +

1

2
Y 2 + Z2 − 2X − ρY − 2

)
δZ . (2.58)

In the case of the isotropic fixed point Eq. (2.49), these equations reduce to

dδX

dα
=
(
1

2
λ2 − 3

)
δX , (2.59)

dδY

dα
=
(
1

2
λ2 − 3

)
δY , (2.60)

dδZ

dα
=
[
1

2
λ2 − 2 + ρλ

]
δZ . (2.61)

We see that the coefficient in the right hand side of above equations becomes negative

when λ2 + 2ρλ < 4 during inflation λ ≪ 1, which means the isotropic fixed point is

an attractor under these conditions and the isotropic fixed point becomes stable in this

parameter region. In the opposite case, λ2 + 2ρλ > 4, the fixed point becomes a saddle

point and unstable. In the latter cases, if there exist the vector field whatever small it

is, the vector field destabilize isotropic inflation.

Now we are interested in the fate of trajectories around the unstable isotropic fixed

point. We will see that those trajectories converge to an anisotropic fixed point. Since

we are considering the inflationary universe λ ≪ 1, the condition λ2 + 2ρλ > 4 implies

ρ ≫ 1. Under these conditions, we can approximately write down the linear equations

as
dδX

dα
= − 3δX , (2.62)

dδY

dα
= − 3δY +

√
6(λ2 + 2ρλ− 4)δZ , (2.63)

dδZ

dα
= − 1

2

√
6(λ2 + 2ρλ− 4)δY . (2.64)

The stability can be analyzed by setting

δX = eωαδX̃ , δY = eωαδỸ , δZ = eωαδZ̃ . (2.65)

Then we find the eigenvalues ω are given by

ω = −3 ,−3

2
± i

√
3(λ2 + 2ρλ− 4)− 9

4
. (2.66)

As the eigenvalues have negative real part, the anisotropic fixed point is stable. Thus,

the end point of trajectories around the unstable isotropic power-law inflation must be
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Figure 1. The phase flow in X-Y -Z space is shown for λ = 0.1, ρ = 50. The

trajectories converge to the anisotropic fixed point.

anisotropic power-law inflation. In Fig.1, we depicted the phase flow in X-Y -Z space

for λ = 0.1, ρ = 50. We see that the trajectories converge to the anisotropic fixed

point indicated by yellow circle. The isotropic fixed point indicated by orange circle is

a saddle point which is an attractor only on Z = 0 plane. Thus, anisotropic power-law

inflation is an attractor solution for parameters satisfying λ2 + 2ρλ > 4 [38].

3. Anisotropic Inflation: Generality and Universality

3.1. Generality

Next we want to clarify the generality of anisotropic inflation. First, we need to look at

the ratio of the shear to the expansion rate Σ/H to characterize the anisotropy of the

inflationary universe. Notice that Eq.(2.18) reads

Σ̇ = −3HΣ +
2κ2

3
ρv . (3.1)

If the anisotropy converges to a value, i.e. Σ̇ becomes negligible, the terminal value

should be given by

Σ

H
=

2

3
R , R ≡ ρv

V (ϕ)
, (3.2)

where we used the slow roll equation

H2 =
κ2

3
V (ϕ) , (3.3)
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which is derived from Eq.(2.16).

In order to realize the above situation, ρv must be almost constant. Assuming that

the vector field is subdominant in the evolution equation of the inflaton field Eq.(2.19)

and conventional single field slow-roll inflation is realized, one can show the coupling

function f(ϕ) should be proportional to e−2α to keep ρv almost constant. In the slow

roll phase, e-folding number α is related to the inflaton field ϕ as dα = −κ2V (ϕ)dϕ/Vϕ

as usual. Then, the functional form of f(ϕ) is determined as

f(ϕ) = e−2α = e
2κ2
∫

V
Vϕ

dϕ
. (3.4)

For the polynomial potential V ∝ ϕn, for example, we have f = e
κ2ϕ2

n .

The above case is, in a sense, a critical one. What we want to consider is super-

critical cases. For simplicity, we parameterize f(ϕ) by

f(ϕ) = e
2cκ2

∫
V
Vϕ

dϕ
, (3.5)

where c is a constant parameter. Now, we look at what happens when c > 1. Note that

Eq.(3.5) can be written as

fϕ
f

= 2cκ2 V

Vϕ

. (3.6)

Then, the condition c > 1 can be promoted to the condition

1

2κ2

fϕVϕ

fV
> 1 . (3.7)

Thus, any functional pairs f and V which satisfies (3.7) in some range could produce

the vector-hair during inflation. The equation for the inflaton becomes

ϕ̈ = −3α̇ϕ̇− Vϕ

[
1− 2c

ϵV
R
]
, (3.8)

where we have defined the slow-roll parameter

ϵV ≡ 1

2κ2

(
Vϕ

V

)2

. (3.9)

In this case, if the vector field is initially small R ≪ ϵV /2c, then the conventional single

field slow-roll inflation is realized. During this stage f ∝ e−2cα and the vector field

grows as ρv ∝ e4(c−1)α. Therefore, the vector field eventually becomes relevant to the

inflaton dynamics Eq.(3.8). Nevertheless, the accelerating expansion of the universe

will continue. The point is that R cannot exceed ϵV /2c. In fact, if R exceeds ϵV /2c,

the inflaton field ϕ does not roll down, which makes ρv = p2Af(ϕ)
−2e−4α−4σ/2 decrease.

Hence, ρv ≪ V (ϕ) always holds. In this way, there appears an attractor where the

inflation continues even when the vector field affects the inflaton dynamics.

The inflaton dynamics is determined by solving the slow-roll equation:

−3α̇ϕ̇− Vϕ + p2Af
−3fϕe

−4α−4σ = 0 . (3.10)

Using the slow-roll equation (3.3), this yields

dϕ

dα
=

ϕ̇

α̇
= − Vϕ

κ2V
+ 2c

p2A
Vϕ

e
−4α−4σ−4cκ2

∫
V
Vϕ

dϕ
. (3.11)
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This can be integrated by neglecting the evolutions of V, Vϕ, σ as

e
4α+4σ+4cκ2

∫
V
Vϕ

dϕ
=

2c2p2A
c− 1

κ2V

V 2
ϕ

[
1 + Ωe−4(c−1)α+4σ

]
, (3.12)

where Ω is a constant of integration. Substituting this into the slow-roll equation

Eq.(3.11), we obtain

dϕ

dα
= − Vϕ

κ2V
+

c− 1

c

Vϕ

κ2V

[
1 + Ωe−4(c−1)α+4σ

]−1
. (3.13)

Initially α → −∞, the second term can be neglected. While, in the future α → ∞, the

term containing Ω disappears. This clearly shows a transition from the conventional

single field slow-roll inflationary phase, where

dϕ

dα
= − 1

κ2

Vϕ

V
(3.14)

holds, to what we refer to as the second inflationary phase, where the vector field is

relevant to the inflaton dynamics and the inflaton gets 1/c times slower as

dϕ

dα
= −1

c

1

κ2

Vϕ

V
. (3.15)

In the second inflationary phase, we can use the formula (3.12) dicarding Ω term and

rewrite the energy density of the vector field as

ρv =
p2A
2
e
−4α−4σ−4cκ2

∫
V
Vϕ

dϕ
=

1

2

c− 1

c2
ϵV V (ϕ) , (3.16)

which yields the anisotropy

Σ

H
=

2

3
R =

1

3

c− 1

c2
ϵV . (3.17)

Moreover, from Eqs.(2.16) and (2.17), the slow-roll parameter defined in terms of the

scale factor becomes

ϵH ≡ − α̈

α̇2
= − 1

α̇2

(
−1

2
κ2ϕ̇2 − 2

3
κ2ρv

)
=

1

c
ϵV , (3.18)

where we neglected the anisotropy and used relations (3.3) and (3.15). Thus we have a

remarkable result [33]

Σ

H
=

1

3

c− 1

c
ϵH . (3.19)

Therefore, for a broad class of potential and gauge kinetic functions, there exist

anisotropic inflationary solutions.

3.2. Example: Chaotic Inflation

In order to make the statement concrete, we consider chaotic inflation with the potential

V (ϕ) =
1

2
m2ϕ2 , (3.20)

where m is the mass of the inflaton. For this potential, the coupling function becomes

f(ϕ) = ecκ
2ϕ2/2. It is instructive to see what happens by solving Eqs.(2.16)-(2.19)

numerically [33].
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Figure 2. Phase flow for ϕ is shown. Here, we took the parameters c = 2 and

κm = 10−5. We also took initial conditions ϕi = 12 and ϕ̇i = 0. There are two

different slow-roll phases. The transition occurs around κϕ = 9.

Figure 3. Evolutions of the anisotropy Σ/H for various c with respect to the e-folding

number are shown. One can see the attractor behavior of the anisotropy.

In Fig. 2, we have shown the phase flow in ϕ − ϕ̇ space where we can see two

slow-roll phases. The first one is the conventional inflationary phase and the second one
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is the anisotropic inflationary phase. As usual, inflation ends with oscillation around the

bottom of the potential. This tells us that isotropic inflation corresponds to a saddle

point and ansiotropic inflation is an attractor in the slow roll phase. In contrast to

anisotropic power-law inflation, the above chaotic anisotropic inflation is a transient

phase in the whole phase space.

In Fig.3, we have calculated the evolution of the anisotropy Σ/H ≡ σ̇/α̇ for various

parameters c under the initial conditions
√
cκϕi = 17. As expected, all of solutions

show a rapid growth of anisotropy in the first slow-roll phase which corresponds to

the conventional inflation. However, the growth of the anisotropy eventually stops at

the order of the slow roll parameter. Notice that this attractor like behavior is not so

sensitive to the parameter c. As one can see there is a sufficient amount of e-folding

number during an anisotropic inflation.

3.3. Universality

As we have seen, the anisotropy satisfies the inequality

Σ

H
≤ ϵH . (3.21)

This inequality holds universally for any potential functions. This result is reasonable

because the cosmic no-hair theorem holds for a gravity system with a positive

cosmological constant dominating the universe. Since the deviation from the exact

de Sitter is characterized by the slow roll parameter, the deviation from the isotropic

expansion must be proportional to the slow roll parameter.

3.4. Variety of Models

There are many models which realize anisotropic inflation. We can generalize single field

inflation to multi-field inflation models [48, 49]. Indeed, in almost all kind of models

including small field and hybrid inflation, there exists anisotropic inflation. Actually, a

more wide range of anisotropic inflationary models are discussed in [50]. We can extend

the standard kinetic term to the Born-Infeld type [51, 52, 53]. In this direction, we may

find a stringy realization of anisotropic inflation. We can introduce a mass term to the

vector field, that is, a vector curvaton [54, 21]. It is interesting to study cosmological

consequences of the vector curvaton scenario in detail. It is also possible to extend

the model to non-abelian gauge fields [55]. In this case, we have more complicated

dynamics which would lead to interesting phenomenology. Interestingly, there are other

non-abelian gauge field models [56, 57, 58]. It is interesting to extend the analysis in this

paper to other Bianchi type models [59]. We can consider inflation with multi-vector

fields [60] and other tensor fields to realize anisotropic inflation.
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4. Statistical Anisotropy in Primordial Fluctuations

So far, we have shown the existence of the anisotropic hair in a variety of inflationary

models. It is interesting to see how to test anisotropic inflation using observations.

To this end, we need the information of fluctuations in anisotropic inflation. Since

the background is anisotropically expanding, we cannot use the standard cosmological

perturbation theory [61, 62, 63, 64, 65, 66, 67, 68]. In this section, we classify

perturbations under the 2-dimensional rotational symmetry and obtain the quadratic

actions for 2-dimensional scalar and vector sectors. In order to grasp the meaning of

variables, we start with the isotropic case and make a gauge transformation from the

flat slicing gauge to the appropriate gauge for 2-dimensional classification. Then, the

resultant gauge can be promoted to the anisotropic spacetime. The gauge we have

chosen makes the analysis and the interpretation easier. Once the gauge is fixed, it is

straightforward to calculate the quadratic action.

4.1. Gauge Fixing and Classification of perturbations

First, we start with the spatially homogeneous and isotropic universe. For simplicity,

we consider flat space.

ds2 = a2(η)
[
−dη2 + δijdx

idxj
]
, (4.1)

where we took a conformal time η. In that case, we can use 3-dimensional rotational

symmetry to classify the perturbed metric. When we want to have the diagonal

quadratic action, we take the following gauge

ds2 = a2
[
−(1 + 2A)dη2 + 2(B,i + Vi)dηdx

i + (δij + hij)dx
idxj

]
, (4.2)

where we imposed Vi,i = 0 and hij,j = hii = 0. If we ignore vector and tensor

perturbations Vi, hij, the above gauge is called the flat slicing gauge. Now, let us move

on to the Fourier space. Since there exists 3-dimensional rotation symmetry, we can take

a wavenumber vector to be k = (k, 0, 0). Then, the perturbed metric has the following

components:

δgµν =


−2a2A a2B,x a2V2 a2V3

∗ 0 0 0

∗ ∗ a2h+ −a2h×

∗ ∗ ∗ −a2h+

 . ∗ is symmetric part.(4.3)

Here, we utilized the special choice k = (k, 0, 0) to solve the constraints Vi,i = 0 and

hij,j = hii = 0. With the same reason, only B,x remains. We defined hyz = −h×, hyy =

−hzz = h+. Now, we will pretend that we have only 2-dimensional rotation symmetry in

y-z plane. In that case, at best, we can take k = (kx, ky, 0). Hence, we make a rotation

in the x− y-plane so that the wavenumber vector becomes k = (kx, ky, 0).
kx
ky
0

 =
1

k


kx − ky 0

ky kx 0

0 0 0




k

0

0

 , (4.4)
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where we have a relation k2 = k2
x + k2

y. Under this rotation, the perturbed metric

becomes

δgµν =



−2a2A kx
k
a2B,x − ky

k
a2V2

ky
k
a2B,x +

kx
k
a2V2 a2V3

∗ a2
k2y
k2
h+ −a2 kxky

k2
h+ a2 ky

k
h×

∗ ∗ a2 k
2
x

k2
h+ −a2 kx

k
h×

∗ ∗ ∗ −a2h+


. (4.5)

To simplify the perturbations, we can make use of gauge transformation

δgµν → δgµν + ξµ;ν + ξν;µ , (4.6)

where the semicolon denotes the covariant derivative with respect to the background

metric. Taking the parameter

ξ0 = 0 , ξx =
kx
2ik2

h+ , ξy =
ky
2ik2

h+ , ξz =
kx
ikyk

h× ,

we obtain

δgµν =



−2a2A kx
k
a2B,x + · · · ky

k
a2B,x + · · · a2V3 + · · ·

∗ a2h+ 0 a2 k
ky
h×

∗ ∗ a2h+ 0

∗ ∗ ∗ −a2h+

 , (4.7)

where we have omitted some unimportant parts. It should be noted that we did not

change slicing but performed only the spatial coordinate transformation. Therefore, we

are still working in the flat slicing where the 3-dimensional scalar curvature vanishes.

In our anisotropic inflation models, the available symmetry is actually small. The

background metric is given by

ds2b = a(η)2(−dη2 + dx2) + b(η)2(dy2 + dz2), (4.8)

that is, a = eα−2σ, b = eα+σ, dη = dt/a. Notice that the conformal time in anisotropic

inflation is the conformal time in 2-dimensional part (η, x). Even in this anisotropic

spacetime, as we have done in (4.7), one can take the following gauge

δgµν =


δg00 δg0x δg0y δg0z

∗ δgxx 0 δgxz

∗ ∗ δgyy 0

∗ ∗ ∗ δgzz

 , (4.9)

where we can impose further conditions so that the perturbed metric goes back to (4.7)

in the isotropic limit.

One can classify the perturbed metric using the rotational symmetry in y−z-plane.

In 2-dimensional flat space, an arbitrary vector ma where a = y, z can be decomposed

into the scalar part ma
,a ̸= 0 and the vector part ma

,a = 0. Since there exists no tensor
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part in 2-dimensions, 2-dimensional tensor can be constructed from the 2-dimensional

vector. Because of the symmetry, the scalar and vector parts are not mixed in the

equations. Thus, the metric perturbations can be classified into the scalar sector and

the vector sector. Thanks to the symmetry in the y−z plane, without loss of generality,

we can take the wavenumber vector to be k = (kx, ky, 0). Hence, the vector sector in

2-dimensional classification can be identified as δg0z, δgxz in the above perturbed metric.

The remaining components δg00, δg0x, δg0y, δgxx, δgyy, δgzz belong to the scalar sector.

4.1.1. 2d vector sector Thus, the perturbations that belong to 2d vector perturbations,

can be written as

δgvectorµν =


0 0 0 b2β3

∗ 0 0 b2Γ

∗ ∗ 0 0

∗ ∗ ∗ 0

 , (4.10)

where we have incorporated the anisotropy while keeping the spatial scalar curvature

to be zero. As to the vector field, we can take

δAvector
µ = (0 , 0 , 0 , D) . (4.11)

Note that we have no residual gauge transformation and, in particular, D is a gauge

invariant under abelian gauge transformations. And, as we have seen in (4.7), Γ

corresponds to the cross-mode polarization of gravitational waves in the isotropic limit

a = b.

Using this gauge, we can calculate the quadratic action as

Svector=
∫

dηd3x

[
b4

4a2
β2
3,x +

b2

4
β2
3,y −

b4

2a2
Γ′β3,x +

f2v′b2

a2
β3D,x

−b2

4
Γ2
,y +

b4

4a2
Γ′2 − f 2a2

2b2
D2

,y −
1

2
f 2D2

,x +
f 2

2
D′2 − f2v′b2

a2
D′Γ

]
.(4.12)

Since the perturbed shift function β3 does not have a time derivative, it is not dynamical.

There are two physical degrees of freedom Γ and D in this 2-dimensional vector sector.

4.1.2. 2d scalar sector For the 2-dimensional scalar sector, we define the metric

perturbations

δgscalarµν =


−2a2Φ aβ1 aβ2 0

∗ 2a2G 0 0

∗ ∗ 2b2G 0

∗ ∗ ∗ −2b2G

 , (4.13)

where we have kept the spatial scalar curvature vanishing. The scalar perturbation

will be represented by δϕ. The variable G and δϕ are the gauge invariant variables
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that correspond to the plus mode of gravitational waves and the scalar perturbations,

respectively, in the isotropic limit a = b. And, we set the perturbed vector to be

δAscalar
µ = (δA0 , 0 , J , 0) , (4.14)

where we have fixed the abelian gauge by putting the longitudinal component to be

zero. From these ansatz, we can calculate the quadratic action as

Sscalar =
∫

d3xdη

[
b2

2a2
f 2δA2

0,x +
f 2

2
δA2

0,y +
b2

a2
f2v′ (G+ Φ) δA0,x − f2J ′δA0,y

− 2
b2

a2
ffϕv

′δϕδA0,x +
1

4
β2
1,y −

1

2
β2,xβ1,y + 2

bb′

a
Φ,xβ1 −

b2

a
ϕ′δϕ,xβ1 +

1

4
β2
2,x

+ a

(
a′

a
+

b′

b

)
β2Φ,y − a

(
a′

a
− b′

b

)
β2G,y +

f 2

a
v′β2J,x − aϕ′β2δϕ,y +

1

2
f2J ′2

− 1

2
f2J2

,x + b2G′2 − a2G2
,y − b2G2

,x +
1

2
b2δϕ′2 − a2

2
δϕ2

,y −
b2

2
δϕ2

,x −
1

2
a2b2Vϕϕδϕ

2

+
b2

2a2

(
f 2
ϕ + ffϕϕ

)
v′2δϕ2 − a2b2V Φ2 +

b2

2a2
f 2v′2G2 − 2a2b2V ΦG− 2bb′Φ′G

−
(
b2

a2
ffϕv

′2 + a2b2Vϕ

)
δϕ (G+ Φ) + b2ϕ′δϕ′ (G− Φ)

]
. (4.15)

Here, Sscalar consists of Φ, β1, β2, G, δA0, δϕ and J . Among them, Φ, β1, β2 and δA0 are

non-dynamical and can be eliminated.

In order to calculate the statistical properties of primordial fluctuations from

anisotropic inflation [69][70][71][72], we need to reduce the action to the one for physical

variables. Then, we can quantize the system and specify the vacuum state. We analyze

the vector sector and the scalar sector, separately.

4.2. Action in slow roll approximation

First, let us consider the vector sector and eliminate non-dynamical variable β3 from

the action for the 2-dimensional vector sector. Now, we define canonically normalized

variables as

Γ̄ ≡ b|ky|√
2k

Γ, D̄ ≡ fD. (4.16)

Then, using these canonical variables, we obtain the reduced action for physical variables

Svector =
∫
dηd3k

[
1

2
|Γ̄′|2 + 1

2

(
(b/k)

′′

(b/k)
− k2

)
|Γ̄|2

+
1

2
|D̄′|2 + 1

2

(
f

′′

f
− k2 − 2

f2v
′2

a2
k2
x

k2

)
|D̄|2

+
1√
2

fv
′

a

a

b

ky
k

{
Γ̄

′
D̄∗ + Γ̄∗′D̄ +

(k/b)
′

(k/b)

(
Γ̄D̄∗ + Γ̄∗D̄

)}]
, (4.17)

where k is time dependent and given by

k(η) ≡

√√√√k2
x +

a2(η)

b2(η)
k2
y , (4.18)
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which becomes constant in the isotropic limit a = b. In the isotropic limit a = b, Γ̄ and

D̄ represent the cross-mode of gravitational waves and vector waves, respectively. The

second line in the action (4.17) describes how both waves are interacting to each other.

Next, we use the slow roll approximation to simplify the action. To obtain the

homogeneous background metric, we integrate the following equations

− Ḣ

H2
= ϵH ,

Σ

H
=

1

3
IϵH , (4.19)

by assuming ϵ
′
H/ϵH ≪ a

′
/a. The resultant expressions are

a = (−η)−1−ϵH , b = (−η)−1−ϵH−IϵH . (4.20)

In this approximation, the universe shows anisotropic power law inflation. We should

recall, in the second inflationary phase, the variable I is given by

I =
c− 1

c
. (4.21)

Note that the range (1,∞) for c corresponds to (0, 1) for I. Using the definition of R,

we obtain

f2v
′2

a2
= 3(−η)−2IϵH . (4.22)

From Eq. (2.15), the background equation for the vector can be found as[
f2v

′
b2

a2

]′

= 0 . (4.23)

From this equation, it is easy to deduce the relation

f
′

f
= (−η)−1 [−2− 3ϵH + ηH − 2IϵH ] , (4.24)

where ηH is a slow-roll parameter defined by

ϵ
′
H

ϵH
= 2

(eα)
′

eα
(2ϵH − ηH) = 2(2ϵH − ηH)(−η)−1 . (4.25)

Of course, ηH is not related to the conformal time η. Furthermore, we obtain

f
′′

f
= (−η)−2 [2 + 9ϵH − 3ηH + 6IϵH ] . (4.26)

Substituting these results into the action, we obtain the action in the slow roll

approximation [72]

Svector =
∫
dηd3k

[
1

2
|Γ̄′ |2 + 1

2

[
−k2 + (−η)−2

{
2 + 3ϵH + 3IϵH + 3IϵH sin2 θ

}]
|Γ̄|2

+
1

2
|D̄′ |2 + 1

2

[
−k2 + (−η)−2

{
2 + 9ϵH − 3ηH + 6IϵH sin2 θ

}]
|D̄|2

+

√
6IϵH
2

(−η)−1 sin θ(Γ̄
′
D̄∗ + Γ̄∗′D̄)−

√
6IϵH
2

(−η)−2 sin θ(Γ̄D̄∗ + Γ̄∗D̄)

]
, (4.27)

where we have defined

sin θ ≡ kya

kb
. (4.28)
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This θ represents the direction dependence. In the isotropic limit I = 0, the Lagrangian

for Γ̄ becomes the familiar one for gravitational waves in a Friedman-Lemaitre universe.

In a similar way, we can derive the quadratic action for physical variables in the

2-dimensional scalar sector. Moreover, it is straightforward to deduce the action in the

slow roll approximation. The resultant action is given by [72]

Sscalar =
∫

dηd3k
[
LGG + LJJ + Lϕϕ + LϕG + LϕJ + LJG

]
, (4.29)

where diagonal parts are given by

LGG =
1

2
|Ḡ′|2 + 1

2

[
−k2 + (−η)−2

{
2 + 3ϵH + 3IϵH + 3IϵH sin2 θ

}]
|Ḡ|2, (4.30)

LJJ =
1

2
|J̄ ′ |2 + 1

2

[
−k2 + (−η)−2

{
2 + 9ϵH − 3ηH − 6IϵH sin2 θ

}]
|J̄ |2, (4.31)

Lϕϕ =
1

2
|δϕ̄′|2

+
1

2

[
−k2 + (−η)−2

{
2 + 9ϵH − 3ηH

1− I
− 12I

1− I
+
(
12IϵH +

24I

1− I

)
sin2 θ

}]
|δϕ̄|2, (4.32)

and the interaction parts reads

LϕG = −3I

√
ϵH

1− I
(−η)−2 sin2 θ

(
Ḡδϕ̄∗ + Ḡ∗δϕ̄

)
, (4.33)

LϕJ =

√
6I

1− I
(−η)−1 sin θ

(
δϕ̄∗′ J̄ + δϕ̄

′
J̄∗
)

−
√

6I

1− I
(−η)−2 sin θ

(
δϕ̄∗J̄ + δϕ̄J̄∗

)
, (4.34)

LJG = −
√
6IϵH
2

(−η)−1 sin θ
(
Ḡ∗′ J̄ + Ḡ

′
J̄∗
)

+

√
6IϵH
2

(−η)−2 sin θ
(
Ḡ∗J̄ + ḠJ̄∗

)
. (4.35)

Here, we defined canonical variables

Ḡ ≡
√
2bG , J̄ ≡ f |kx|

k
J , δϕ̄ ≡ bδϕ . (4.36)

Note that Ḡ , J̄ and δϕ̄ represent the gravitational waves, the vector waves, and the

scalar perturbations, respectively. The above action shows there exist the interaction

among these variables. We notice the scalar part (4.32) contains I without suppression

by a slow-roll parameter ϵH . Therefore, to obtain the quasi-scale invariant spectrum of

curvature perturbation, I itself has to be small.

From the actions (4.27) and (4.29), we see there are two sources of statistical

anisotropy of fluctuations. First, the statistical anisotropy of fluctuations comes from

the anisotropic expansion itself. Intuitively, this can be understood from the anisotropic

effective Hawking temperature Heff/2π, where Heff denotes the effective expansion rate.

Indeed, the expansion rate in the direction of the background vector is relatively small,

hence the effective Hawking temperature is low. Then, this direction has less fluctuation

power compared to the other directions. Thus, the effective Hawking temperature
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induces the anisotropy in the power spectrum of fluctuations. This effect is encoded in

(4.30), (4.31), and (4.32). The other source of the statistical anisotropy of fluctuations

comes from the couplings (4.33), (4.34) and (4.35) due to the background vector field.

The essential structure of couplings can be understood without complicated calculations.

Take a look at the following term
√
−ggµαgνβf 2(ϕ)FµνFαβ . (4.37)

Here, we should recall the order of magnitude of background quantities

f 2v′2

a2
∼ IϵH ,

fϕ
f

∼ κ2V

Vϕ

∼ 1
√
ϵH

.

For example, to obtain the J − G coupling, one of Fµν have to be replaced by the

background quantity v′. Hence, the coefficients in the J − G coupling should be

proportional to fv′ which is of the order of
√
IϵH . This explains the strength of the

coupling in (4.35). Similarly, J − δϕ coupling should be proportional to fϕv
′ because

we have to take the variation with respect to ϕ. Hence, we can estimate its magnitude

to be
√
I. This explains the interaction term (4.34). Finally, the coupling G − δϕ has

a magnitude of the order of fϕv
′2 which is proportional to I

√
ϵH . This shows a good

agreement with the coupling (4.33). Thus, we can understand why there is a hierarchy

among the couplings of the gravitational waves, the vector waves and the scalar field.

4.3. Statistical Anisotropy

In this subsection, we will calculate corrections to power spectrum of various variables

due to the anisotropy. To set the initial conditions, we need to quantize this system

by promoting canonical variables to operators which satisfy the canonical commutation

relations. The point is that, with a given wavenumber, the actions (4.27) and (4.29)

reduce to those of independent harmonic oscillators in the subhorizon limit −kη ≫ 1.

We choose the Bunch-Davis vacuum state |0⟩ by imposing the conditions aa,k|0⟩ = 0 at

an initial time ηi. Here, aa,k is an annihilation operator whose commutation relations

are given by [
aa,k, a

†
bk′

]
= δabδ

(3)(k− k′), [aa,k, ab,k′ ] = 0 . (4.38)

We are interested in the power spectrum of the scalar perturbations

⟨0|δϕ̄k(η)δϕ̄p(η)|0⟩ ≡ Pδϕ(k)δ(k+ p) , (4.39)

and the power spectrum of the cross and plus mode of gravitational waves

⟨0|Γ̄k(η)Γ̄p(η)|0⟩ ≡ PΓ(k)δ(k+ p) , (4.40)

⟨0|Ḡk(η)Ḡp(η)|0⟩ ≡ PG(k)δ(k+ p) . (4.41)

We can also calculate the cross correlation between the plus mode of gravitational waves

and the scalar perturbations

⟨0|δϕ̄k(η)Ḡp(η)|0⟩ ≡ PδϕG(k)δ(k+ p) . (4.42)
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We treat the anisotropy perturbatively and estimate its magnitude by using

perturbation in the interaction picture. In the interaction picture, the expectation

value for a physical quantity O(η) is given by

⟨in |O(η)| in⟩ =
⟨
0
∣∣∣∣[T̄ exp

(
i
∫ η

ηi
HI(η

′
)dη

′
)]

O(η)
[
T exp

(
−i
∫ η

ηi
HI(η

′
)dη

′
)]∣∣∣∣ 0⟩ ,(4.43)

where |in⟩ is an in vacuum in the interaction picture, T and T̄ denote a time-ordered

and an anti-time-ordered product and HI denotes the interaction part of Hamiltonian

in this picture. This is equivalent to the following

⟨in |O(η)| in⟩ =
∞∑

N=0

iN
∫ η

ηi
dηN

∫ ηN

ηi
dηN−1 · · ·

∫ η2

ηi
dη1

× ⟨0 |[HI(η1), [HI(η2), · · · [HI(ηN),O(η)] · · ·]]| 0⟩ . (4.44)

In our analysis, we assume the noninteracting part of Hamiltonian to be that of free

fields in deSitter spacetime

L0 =
∑
n

[
1

2
|Q′

n|2 −
1

2

(
k2 − 2(−η)−2

)
|Qn|2

]
, (4.45)

and the operators in the interaction picture are given by

Qn,k(η) = u(η)an,k + u(η)∗a†n,−k, (4.46)

u(η) ≡
√

1

2k
e−ikη

(
1− i

kη

)
, (4.47)

where Qn represent the physical variables D̄, Γ̄, Ḡ, J̄ , δϕ̄. And the rest of the Lagrangian

(4.27)-(4.35) is regarded as the interaction part LI = L(2)−L0. To see the leading effect

on the anisotropy in the scalar perturbation, which is of the order of I, we evaluate the

correction due to the interaction given by

HϕJ
I ≡

∫
d3k

[
−LϕJ

]
=
∫

d3k

−
√

6I

1− I
(−η)−1 sin θ

(
δ̄ϕ

†′
J̄ + δ̄ϕ

′
J̄†
)

+

√
6I

1− I
(−η)−2 sin θ

(
δ̄ϕ

†
J̄ + δ̄ϕJ̄†

) . (4.48)

Note that in the analogy with the slow-roll parameter in the ordinary slow-roll inflation,

the term proportional to I sin2 θδϕ̄δϕ̄† in (4.32) can be expected to give the anisotropy

δ⟨in
∣∣∣δϕ̄kδϕ̄p

∣∣∣ in⟩/⟨0 ∣∣∣δϕ̄kδϕ̄p

∣∣∣ 0⟩ ∼ sin2 θIN(k) where N(k) is the e-folding number from

the horizon exit. Thus, the leading correction comes from the interaction through the

term HϕJ
I . The leading correction is given by

δ⟨in
∣∣∣δϕ̄k(η)δϕ̄p(η)

∣∣∣ in⟩
= i2

∫ η

ηi
dη2

∫ η2

ηi
dη1

⟨
0
∣∣∣[HϕJ

I (η1),
[
HϕJ

I (η2), δϕ̄k(η)δϕ̄p(η)
]]∣∣∣ 0⟩ . (4.49)
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Using Eqs.(4.46) and commutation relations for the creation and annihilation operators,

we obtain the anisotropy expressed as follows

δ⟨in
∣∣∣δϕ̄kδϕ̄p

∣∣∣ in⟩
⟨0
∣∣∣δϕ̄kδϕ̄p

∣∣∣ 0⟩ (η)

=
24I

1− I
sin2 θ

∫ η

ηi
dη2

∫ η2

ηi
dη1

8

|u(η)|2
Im

[
−(−η2)

−1u
′
(η2)u

∗(η) + (−η2)
−2u(η2)u

∗(η)
]

× Im
[
u(η1)u

∗(η2)
{
−(−η1)

−1u
′
(η1)u

∗(η) + (−η1)
−2u(η1)u

∗(η)
}]

, (4.50)

where Im denotes the imaginary part. Substituting the function form of u (4.47) and

introducing time variables χ ≡ kη, χ1 ≡ kη1 and χ2 ≡ kη2, we have

δ⟨in
∣∣∣δϕ̄kδϕ̄p

∣∣∣ in⟩
⟨0
∣∣∣δϕ̄kδϕ̄p

∣∣∣ 0⟩ (χ)

=
6I

1− I
sin2 θ

∫ χ

χi

dχ2

∫ χ2

χi

dχ1
8

1 + 1
(−χ)2

1

−χ1

1

−χ2

[
cos(−χ2 + χ)− sin(−χ2 + χ)

1

χ

]

×
[
cos(−2χ1 + χ+ χ2)

(
1 +

1

χχ1

− 1

χχ2

+
1

χ1χ2

)

+ sin(−2χ1 + χ+ χ2)

(
− 1

χχ1χ2

+
1

χ1

− 1

χ
− 1

χ2

) ]
. (4.51)

The contribution to the integral from the subhorizon −χ1 ≫ 1 is negligible. In the limit

of superhorizon −χ1 ≪ 1, we also have −χ2 ≪ 1,−χ ≪ 1. Hence, the integrand in

Eq.(4.51) approximately becomes 8/χ1χ2. Thus, the anisotropy can be evaluated as [72]

δ⟨in
∣∣∣δϕ̄kδϕ̄p

∣∣∣ in⟩
⟨0
∣∣∣δϕ̄kδϕ̄p

∣∣∣ 0⟩ (χ) =
6I

1− I
sin2 θ

∫ χ

−1
dχ2

∫ χ2

−1
dχ1

8

χ1χ2

=
24I

1− I
sin2 θ N2(k), (4.52)

where N(k) ≡ − ln(−kη) is the e-folding number from the horizon exit.

For the anisotropy in both polarizations of gravitational waves, the similar

calculations give [72]

δ⟨in
∣∣∣Γ̄kΓ̄p

∣∣∣ in⟩
⟨0
∣∣∣Γ̄kΓ̄p

∣∣∣ 0⟩ =
δ⟨in

∣∣∣ḠkḠp

∣∣∣ in⟩
⟨0
∣∣∣ḠkḠp

∣∣∣ 0⟩ = 6IϵH sin2 θ N2(k) , (4.53)

where we used the interaction term in the action (4.27) for Γ̄ and that in (4.35) for Ḡ.

It is interesting to calculate the cross correlation. The leading contribution comes from

HJG
I and HϕJ

I . The result is as follows [72]:

⟨in|δϕ̄kḠp|in⟩
⟨0|δϕ̄kδϕ̄p|0⟩

≃ −24I

√
ϵH

1− I
N2(k) . (4.54)

As we will soon see, this might give a detectable number.
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5. How To Test Anisotrpic Inflation

Now, we are in a position to discuss cosmological implication of an anisotropic

inflationary scenario. As we have listed up in the introduction, there are many

interesting phenomenology in anisotropic inflation. Here, we recapitulate the results.

Remember that the anisotropy in the power spectrum is parameterized by

P (k) = P (k)
[
1 + g∗ sin

2 θ
]
. (5.1)

Then, we can predict the following:

• There exists statistical anisotropy in curvature perturbations of the order of

gs = 24IN2(k) . (5.2)

• There exists statistical anisotropy in gravitational waves of the order of

gt = 6IϵHN
2(k) . (5.3)

• These exists the cross correlation between scalar perturbations and gravitational

waves of the order of −24I
√
ϵHN

2(k). Using the definition of curvature

perturbations ζ = δϕ̄/
√
2ϵH , one can translate the cross correlation (4.54) between

the scalar perturbations and gravitational waves to that between the curvature

perturbations and gravitational waves normalized by the power spectrum of

curvature perturbations:

rc =
⟨in|ζkḠp|in⟩
⟨0|ζkζp|0⟩

= −24
√
2IN2(k)ϵH . (5.4)

Here, we should note that I ≪ 1. Due to the interaction on superhorizon scales, there is

an enhancement factorN2(k) in the above quantities. Because of this enhancement, even

when the anisotropy of the spacetime is quite small, say Σ/H ∼ 10−7 in our example,

the statistical anisotropy imprinted in primordial fluctuations can not be negligible in

precision cosmology.

It is useful to notice that there exist consistency relations between observables

4gt = ϵH gs , rc = −
√
2ϵHgs . (5.5)

The consistency relations allows us to test anisotropic inflation in a model independent

way. Let us explain how to use it. It is known that the current observational limit

of the statistical anisotropy for the curvature perturbations is given by gs < 0.3 [35].

Now, suppose that we detected gs = 0.3. Then, the consistency relations would give

us predictions. Namely, anisotropic inflation implies the anisotropy in the gravitational

waves

gt ≃ 10−3 (5.6)

and the cross correlation

rc = −
√
2gsϵH ∼ −4× 10−3 , (5.7)

where we used gs ∼ 0.3 and ϵH ∼ 10−2. If these predictions are confirmed by the CMB

observations, that must be a strong evidence of anisotropic inflation.
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Figure 4. The TT spectra CTT
ℓ,ℓ+2 induced by anisotropy in scalar perturbations,

that in tensor perturbations and cross correlation. The parameters are chosen as

gs = 0.3, r = 0.3.

Apart from the above uses, we can use the observational upper bound gs < 0.3

to give a cosmological constraint on the gauge kinetic function. Indeed, we have a

constraint 24IN2(k) < 0.3. Since I is derived from the gauge kinetic function and

the e-folding number N(k) can be determined once reheating process is clarified, the

constraint on gs implies the constraint on the gauge kinetic function.

In [71], it is pointed out that the sign of gs predicted by our models is different

from the observed one. However, it is possible to modify the model so that the sign

of gs is flipped. For example, we can consider two vector fields. Remarkably, the

dynamics of vector fields tends to minimize the anisotropy in the expansion of the

universe and leading to the orthogonal dyad [60]. Then, the orthogonal direction to the

plane determined by two vectors becomes a preferred direction. In this case, we can

expect the sign of gs becomes opposite. We can also utilize anti-symmetric tensor fields

to achieve the same aim.

We showed in the above how the consistency relations are used to predict the

observables. So, the next question is how can we see these features in the CMB.

The answer is that the anisotropy related to tensor perturbations induces off-diagonal

TB,EB spectra Cℓ,ℓ+1 as well as on- and off-diagonal TT,EE,BB, TE spectra Cℓ,ℓ,

Cℓ,ℓ+2. Here, we have defined the angular power spectrum Cℓ,ℓ′ =< aℓ,maℓ′,m′ > with

coefficients aℓm of the spherical harmonic expansion.
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Figure 5. The TB and EB spectra CTB
ℓ,ℓ+1, C

EB
ℓ,ℓ+1 induced by the cross correlation.

As a reference, the conventional diagonal BB spectrum induced by isotropic part of

the tensor perturbations is plotted with a dotted line. The parameters are taken as

gs = 0.3, r = 0.3.

First, we compare the amplitudes of signals induced by the three kind of

anisotropy [73]. In Fig 4, we have depicted off-diagonal TT correlations CTT
ℓ,ℓ+2 induced

by the anisotropy. As for the parameter of anisotropy in scalar perturbations, we

adopted the value gs = 0.3 as a reference, which is just of the order of a systematic

error in WMAP data. Note that, according to [35], a signal as small as 2% can be

detected with the PLANCK. We also assumed the tensor-to-scalar ratio to be r = 0.3.

Then the other quantities can be determined by the consistency relations in our model:

r = 16ϵH , 4gt = ϵHgs , rc = −
√
2ϵHgs. We see that the contributions of the anisotropy

in tensor perturbations and the cross correlation are suppressed in comparison to that of

the anisotropy in scalar perturbations. And, the cross correlation has the contribution

next to that of the anisotropy in scalar perturbations. This reflects the hierarchy among

gs, rgt = O(gsϵ
2
H),

√
rrc = O(gsϵH). It is also true for EE and TE spectra. The ratio

between these effects are given by the slow-roll parameter ϵH (or the tensor-to-scalar

ratio r) and does not depend on the value of gs.

Next we consider peculiar signals of anisotropic inflation [73]. In Fig 5, we have

depicted examples of TB and EB correlations CTB
ℓ,ℓ+1, CEB

ℓ,ℓ+1. The parameters are

again r = 0.3 and gs = 0.3. As a reference, the conventional BB diagonal spectrum

induced by the isotropic part of tensor perturbations is also plotted with a dotted

line. Note that unlike parity violating cases for which odd parity correlations CTB
ll , CEB

ll
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exist [74, 75, 76, 77], our model predicts even parity correlations such as CTB
l,l+1 as the

result of parity symmetry of the system. The ratio of TB correlation induced by cross

correlation to the isotropic BB correlation is not dependent on ϵH (or r) for a fixed

value of gs in our anisotropic inflation model. For the optimistic value of gs ∼ 0.3,

both amplitudes become comparable. This simple order estimation implies that the

TB signal could be comparable to that of B mode correlation induced by primordial

gravitational waves. Hence, anisotropic inflation can be a potential source of off-diagonal

TB correlation, in addition to other effects such as gravitational lensing and our peculiar

velocity. Since the current constraints on the TB/TE ratio is of the order of 10−2 [4],

we need to improve the accuracy by one more order, which might be achieved by the

PLANCK.

6. Conclusion

In this review article, we tried to explain how anisotropic inflation naturally appears in

supergravity models and how to test anisotropic inflationary models by observations.

There are several predictions specific to anisotropic inflation. There exists the statistical

anisotropy in primordial curvature and tensor perturbations. Furthermore, there exists a

cross correlation between the curvature and tensor perturbations which can be regarded

as a kind of the statistical anisotropy. Most importantly, there are consistency relations

between observables in anisotropic inflationary models. This finding gives rise to a

model independent test of anisotropic inflation. On the other hand, each observable

gives the information of the specific model. Actually, we have already given the first

cosmological constraint on the the gauge kinetic function.

The existence of anisotropic inflation can be regarded as a counter example to

the cosmic no-hair conjecture. Indeed, in the presence of the gauge kinetic function,

there could be vector-hair which leads to the anisotropy in the cosmic expansion during

inflation. Hence, the cosmic no-hair conjecture should be modified appropriately.

Recently, we have examined inflation with multi-vector fields and found that inflation

tends to minimize their hair [60].

There are several directions to be explored. It is possible to extend the Bianchi

type I model to other Bianchi type models. Theoretically, it is also interesting to

embed anisotropic inflation into string theory. Observationally, we need to check the

data in the CMB more seriously. It is worth investigating how to quantify the statistical

anisotropy [78, 79, 80, 81, 82, 83, 84, 85]. In fact, our main message is that the statistical

anisotropy is logically allowed, natural theoretical models exist, and hence observational

check of the statistical anisotropy needs to be performed. Indeed, there is no apparent

reason to respect the non-Gaussianity than the statistical anisotropy.
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