104 research outputs found

    Complementing Cancer Metastasis

    Get PDF
    Complement is an effector of innate immunity and a bridge connecting innate immunity and subsequent adaptive immune responses. It is essential for protection against infections and for orchestrating inflammatory responses. Recent studies have also demonstrated contribution of the complement system to several homeostatic processes that are traditionally not considered to be involved in immunity. Thus, complement regulates homeostasis and immunity. However, dysregulation of this system contributes to several pathologies including inflammatory and autoimmune diseases. Unexpectedly, studies of the last decade have also revealed that complement promotes cancer progression. Since the initial discovery of tumor promoting role of complement, numerous preclinical and clinical studies demonstrated contribution of several complement components to regulation of tumor growth through their direct interactions with the corresponding receptors on tumor cells or through suppression of antitumor immunity. Most of this work, however, focused on a role of complement in regulating growth of primary tumors. Only recently, a few studies showed that complement promotes cancer metastasis through its contribution to epithelial-to-mesenchymal transition and the premetastatic niche. This latter work has shown that complement activation and generation of complement effectors including C5a occur in organs that are target for metastasis prior to arrival of the very first tumor cells. C5a through its interactions with C5a receptor 1 inhibits antitumor immunity by activating and recruiting immunosuppressive cells from the bone marrow to the premetastatic niche and by regulating function and self-renewal of pulmonary tissue-resident alveolar macrophages. These new advancements provide additional evidence for multifaceted functions of complement in cancer

    LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition

    Get PDF
    LKB1/STK11 is a multitasking tumour suppressor kinase. Germline inactivating mutations of the gene are responsible for the Peutz-Jeghers hereditary cancer syndrome. It is also somatically inactivated in approximately 30% of non-small-cell lung cancer (NSCLC). Here, we report that LKB1/KRAS mutant NSCLC cell lines are sensitive to the MEK inhibitor CI-1040 shown by a dose-dependent reduction in proliferation rate, whereas LKB1 and KRAS mutations alone do not confer similar sensitivity. We show that this subset of NSCLC is also sensitised to the mTOR inhibitor rapamycin. Importantly, the data suggest that LKB1/KRAS mutant NSCLCs are a genetically and functionally distinct subset and further suggest that this subset of lung cancers might afford an opportunity for exploitation of anti-MAPK/mTOR-targeted therapies

    Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration

    Get PDF
    Surface potential of biomaterials is a key factor regulating cell responses, driving their adhesion and signaling in tissue regeneration. In this study we compared the surface and zeta potential of smooth and porous electrospun polycaprolactone (PCL) fibers, as well as PCL films, to evaluate their significance in bone regeneration. The ' surface potential of the fibers was controlled by applying positive and negative voltage polarities during the electrospinning. The surface properties of the different PCL fibers and films were measured using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM), and the zeta potential was measured using the electrokinetic technique. The effect of surface potential on the morphology of bone cells was examined using advanced microcopy, including 3D reconstruction based on a scanning electron microscope with a focused ion beam (FIB-SEM). Initial cell adhesion and collagen formation were studied using fluorescence microscopy and Sirius Red assay respectively, while calcium mineralization was confirmed with energy-dispersive x-ray (EDX) and Alzarin Red staining. These studies revealed that cell adhesion is driven by both the surface potential and morphology of PCL fibers. Furthermore, the ability to tune the surface potential of electrospun PCL scaffolds provides an essential electrostatic handle to enhance cell-material interaction and cellular activity, leading to controllable morphological changes

    Anti-EGFR Antibody Efficiently and Specifically Inhibits Human TSC2−/− Smooth Muscle Cell Proliferation. Possible Treatment Options for TSC and LAM

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC), a tumor syndrome caused by mutations in TSC1 or TSC2 genes, is characterized by the development of hamartomas. We previously isolated, from an angiomyolipoma of a TSC2 patient, a homogenous population of smooth muscle-like cells (TSC2(-/-) ASM cells) that have a mutation in the TSC2 gene as well as TSC2 loss of heterozygosity (LOH) and consequently, do not produce the TSC2 gene product, tuberin. TSC2(-/-) ASM cell proliferation is EGF-dependent. METHODS AND FINDINGS: Effects of EGF on proliferation of TSC2(-/-) ASM cells and TSC2(-/-) ASM cells transfected with TSC2 gene were determined. In contrast to TSC2(-/-) ASM cells, growth of TSC2-transfected cells was not dependent on EGF. Moreover, phosphorylation of Akt, PTEN, Erk and S6 was significantly decreased. EGF is a proliferative factor of TSC2(-/-) ASM cells. Exposure of TSC2(-/-) ASM cells to anti-EGFR antibodies significantly inhibited their proliferation, reverted reactivity to HMB45 antibody, a marker of TSC2(-/-) cell phenotype, and inhibited constitutive phosphorylation of S6 and ERK. Exposure of TSC2(-/-) ASM cells to rapamycin reduced the proliferation rate, but only when added at plating time. Although rapamycin efficiently inhibited S6 phosphorylation, it was less efficient than anti-EGFR antibody in reverting HMB45 reactivity and blocking ERK phosphorylation. In TSC2(-/-) ASM cells specific PI3K inhibitors (e.g. LY294002, wortmannin) and Akt1 siRNA had little effect on S6 and ERK phosphorylation. Following TSC2-gene transfection, Akt inhibitor sensitivity was observed. CONCLUSION: Our results show that an EGF independent pathway is more important than that involving IGF-I for growth and survival of TSC(-/-) ASM cells, and such EGF-dependency is the result of the lack of tuberin

    Underground operation of the ICARUS T600 LAr-TPC: first results

    Full text link
    Open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the particle interaction Standard Model. Addressing these questions requires a new generation of massive particle detectors exploring the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of a novel detector generation able to combine the imaging capabilities of the old famous "bubble chamber" with an excellent energy measurement in huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory, studying cosmic rays, neutrino oscillation and proton decay. Physical potentialities of this novel telescope are presented through few examples of neutrino interactions reconstructed with unprecedented details. Detector design and early operation are also reported.Comment: 14 pages, 8 figures, 2 tables. Submitted to Jins

    Is sirolimus a therapeutic option for patients with progressive pulmonary lymphangioleiomyomatosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphangioleiomyomatosis (LAM) is a rare lung disease characterised by progressive airflow obstruction. No effective medical treatment is available but therapy with sirolimus has shown some promise. The aim of this observational study was to evaluate sirolimus in progressive LAM.</p> <p>Methods</p> <p>Sirolimus (trough level 5 - 10 ng/ml) was administered to ten female patients (42.4 ± 11.9 years) with documented progression. Serial pulmonary function tests and six-minute-walk-distance (6-MWD) assessments were performed.</p> <p>Results</p> <p>The mean loss of FEV<sub>1 </sub>was -2.30 ± 0.52 ml/day before therapy and a significant mean gain of FEV<sub>1 </sub>of 1.19 ± 0.26 ml/day was detected during treatment (p = 0.001). Mean FEV<sub>1 </sub>and FVC at baseline were 1.12 ± 0.15 l (36.1 ± 4.5%pred.) and 2.47 ± 0.25 l (69.2 ± 6.5%pred.), respectively. At three and six months during follow-up a significant increase of FEV<sub>1 </sub>and FVC was demonstrated (3 months ΔFEV<sub>1</sub>: 220 ± 82 ml, p = 0.024; 6 months ΔFEV<sub>1</sub>: 345 ± 58 ml, p = 0.001); (3 months ΔFVC: 360 ± 141 ml, p = 0.031; 6 months ΔFVC: 488 ± 138 ml, p = 0.006). Sirolimus was discontinued in 3 patients because of serious recurrent lower respiratory tract infection or sirolimus-induced pneumonitis. No deaths and no pneumothoraces occurred during therapy.</p> <p>Conclusions</p> <p>Our data suggest that sirolimus might be considered as a therapeutic option in rapidly declining LAM patients. However, sirolimus administration may be associated with severe respiratory adverse events requiring treatment cessation in some patients. Moreover, discontinuation of sirolimus is mandatory prior to lung transplantation.</p

    Complement c5a receptor facilitates cancer metastasis by altering t-cell responses in the metastatic niche

    Get PDF
    The impact of complement on cancer metastasis has not been well studied. In this report, we demonstrate in a preclinical mouse model of breast cancer that the complement anaphylatoxin C5a receptor (C5aR) facilitates metastasis by suppressing effector CD8(+) and CD4(+) T-cell responses in the lungs. Mechanisms of this suppression involve recruitment of immature myeloid cells to the lungs and regulation of TGF beta and IL10 production in these cells. TGF beta and IL10 favored generation of T regulatory cells (T-reg) and Th2-oriented responses that rendered CD8(+) T cells dysfunctional. Importantly, pharmacologic blockade of C5aR or its genetic ablation in C5aR-deficient mice were sufficient to reduce lung metastases. Depletion of CD8(+) T cells abolished this beneficial effect, suggesting that CD8(+) T cells were responsible for the effects of C5aR inhibition. In contrast to previous findings, we observed that C5aR signaling promoted T-reg generation and suppressed T-cell responses in organs where metastases arose. Overall, our findings indicated that the immunomodulatory functions of C5aR are highly context dependent. Furthermore, they offered proof-of-concept for complement-based immunotherapies to prevent or reduce cancer metastasis. (C) 2014 AACR

    Integrating BRAF/MEK inhibitors into combination therapy for melanoma

    Get PDF
    The discovery of BRAF mutations in melanoma has not yet translated into clinical success, suggesting that BRAF/MEK inhibitors will need to be combined with other agents. In the current review, we discuss other pathways likely to be important for melanoma progression and suggest possible drug combinations for future clinical testing

    The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks

    Get PDF
    Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods
    corecore