9 research outputs found
The Slavic NBN founder mutation: a role for reproductive fitness?
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the 'Slavic people'. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2
Fatal Cardiac Arrhythmia and Long-QT Syndrome in a New Form of Congenital Generalized Lipodystrophy with Muscle Rippling (CGL4) Due to PTRF-CAVIN Mutations
We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4) of whom five members had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome, bradycardia, as well as supraventricular and ventricular tachycardias. Further symptoms comprised myopathy with muscle rippling, skeletal as well as smooth-muscle hypertrophy, leading to impaired gastrointestinal motility and hypertrophic pyloric stenosis in some children. Additionally, we found impaired bone formation with osteopenia, osteoporosis, and atlanto-axial instability. Homozygosity mapping located the gene within 2 Mbp on chromosome 17. Prioritization of 74 candidate genes with GeneDistiller for high expression in muscle and adipocytes suggested PTRF-CAVIN (Polymerase I and transcript release factor/Cavin) as the most probable candidate leading to the detection of homozygous mutations (c.160delG, c.362dupT). PTRF-CAVIN is essential for caveolae biogenesis. These cholesterol-rich plasmalemmal vesicles are involved in signal-transduction and vesicular trafficking and reside primarily on adipocytes, myocytes, and osteoblasts. Absence of PTRF-CAVIN did not influence abundance of its binding partner caveolin-1 and caveolin-3. In patient fibroblasts, however, caveolin-1 failed to localize toward the cell surface and electron microscopy revealed reduction of caveolae to less than 3%. Transfection of full-length PTRF-CAVIN reestablished the presence of caveolae. The loss of caveolae was confirmed by Atomic Force Microscopy (AFM) in combination with fluorescent imaging. PTRF-CAVIN deficiency thus presents the phenotypic spectrum caused by a quintessential lack of functional caveolae
Identification of a novel candidate gene for non-syndromic autosomal recessive intellectual disability: the WASH complex member SWIP
High-throughput sequencing has greatly facilitated the elucidation of genetic disorders, but compared with X-linked and autosomal dominant diseases, the search for genetic defects underlying autosomal recessive diseases still lags behind. In a large consanguineous family with autosomal recessive intellectual disability (ARID), we have combined homozygosity mapping, targeted exon enrichment and high-throughput sequencing to identify the underlying gene defect. After appropriate single-nucleotide polymorphism filtering, only two molecular changes remained, including a non-synonymous sequence change in the SWIP [Strumpellin and WASH (Wiskott-Aldrich syndrome protein and scar homolog)-interacting protein] gene, a member of the recently discovered WASH complex, which is involved in actin polymerization and multiple endosomal transport processes. Based on high pathogenicity and evolutionary conservation scores as well as functional considerations, this gene defect was considered as causative for ID in this family. In line with this assumption, we could show that this mutation leads to significantly reduced SWIP levels and to destabilization of the entire WASH complex. Thus, our findings suggest that SWIP is a novel gene for ARID
Fatal Cardiac Arrhythmia and Long-QT Syndrome in a New Form of Congenital Generalized Lipodystrophy with Muscle Rippling (CGL4) Due to <em>PTRF-CAVIN</em> Mutations
We demonstrate an all-optical technique for the elimination of timing jitter in short pulse transmission systems. The technique relies on pulse pre-shaping followed by optical switching in a periodically poled lithium niobate waveguide via cascaded second harmonic and difference frequency generation
Allelic heterogeneity in the COH1 gene explains clinical variability in Cohen syndrome
Cohen syndrome is a rare autosomal recessive disorder with a variable clinical picture mainly characterized by developmental delay, mental retardation, microcephaly, typical facial dysmorphism, progressive pigmentary retinopathy, severe myopia, and intermittent neutropenia. A Cohen syndrome locus was mapped to chromosome 8q22 in Finnish patients, and, recently, mutations in the gene COH1 were reported in patients with Cohen syndrome from Finland and other parts of northern and western Europe. Here, we describe clinical and molecular findings in 20 patients with Cohen syndrome from 12 families, originating from Brazil, Germany, Lebanon, Oman, Poland, and Turkey. All patients were homozygous or compound heterozygous for mutations in COH1. We identified a total of 17 novel mutations, mostly resulting in premature termination codons. The clinical presentation was highly variable. Developmental delay of varying degree, early-onset myopia, joint laxity, and facial dysmorphism were the only features present in all patients; however, retinopathy at school age, microcephaly, and neutropenia are not requisite symptoms of Cohen syndrome. The identification of novel mutations in COH1 in an ethnically diverse group of patients demonstrates extensive allelic heterogeneity and explains the intriguing clinical variability in Cohen syndrome