449 research outputs found

    Unsolved problems in the lowermost mantle

    Get PDF
    Many characteristics of D '' layer may be attributed to the recently discovered MgSiO3 post-perovskite phase without chemical heterogeneities. They include a sharp discontinuity at the top of D '', regional variation in seismic anisotropy, and a steep Clapeyron slope. However, some features remain unexplained. The seismically inferred velocity jump is too large in comparison to first principles calculations, and the sharpness of the discontinuity may require a chemical boundary. Chemical heterogeneity may play an important role in addition to the phase transformation from perovskite to post-perovskite. Phase transformation and chemical heterogeneity and the attendant changes in physical properties, such as rheology and thermal conductivity, are likely to play competing roles in defining the dynamical stability of the D '' layer. Revealing the relative roles between phase transition and chemical anomalies is an outstanding challenge in the study of the role of D '' in thermal-chemical evolution of the Earth

    Rheological control of oceanic crust separation in the transition zone

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95124/1/grl9376.pd

    Adsorption and desorption of deuterium on partially oxidized Si(100) surfaces

    Get PDF
    Adsorption and desorption of deuterium are studied on the partially oxidized Si(100) surfaces. The partial oxygen coverage causes a decrease in the initial adsorption probability of D atoms. The observed D2 temperature-programmed-desorption (TPD) spectra comprise of multiple components depending on the oxygen coverage (θO). For θO=0.1ML the D2 TPD spectrum is deconvoluted into four components, each of which has a peak in the temperature region higher than the D2 TPD peaking at 780 K on the oxygen free surface. The highest TPD component with a peak around 1040 K is attributed to D adatoms on Si dimers backbonded by an oxygen atom. The other components are attributed to D adatoms on the nearest or second nearest sites of the O-backbonded Si dimers. D adatoms on the partially oxidized Si surfaces are abstracted by gaseous H atoms along two different abstraction pathways: one is the pathway along direct abstraction (ABS) to form HD molecules and the other is the pathway along indirect abstraction via collision-induced-desorption (CID) of D adatoms to form D2 molecules. The ABS pathway is less seriously affected by oxygen adatoms. On the other hand, the CID pathway receives a strong influence of oxygen adatoms since the range of surface temperature effective for CID is found to considerably shift to higher surface temperatures with increasing θO. Gradual substitution of D adatoms with H atoms during H exposure results in HD desorption along the CID pathway in addition to the ABS one. By employing a modulated beam technique the CID-related HD desorption is directly distinguished from the ABS-related one

    Towards Closing the Window on Strongly Interacting Dark Matter: Far-Reaching Constraints from Earth's Heat Flow

    Full text link
    We point out a new and largely model-independent constraint on the dark matter scattering cross section with nucleons, applying when this quantity is larger than for typical weakly interacting dark matter candidates. When the dark matter capture rate in Earth is efficient, the rate of energy deposition by dark matter self-annihilation products would grossly exceed the measured heat flow of Earth. This improves the spin-independent cross section constraints by many orders of magnitude, and closes the window between astrophysical constraints (at very large cross sections) and underground detector constraints (at small cross sections). In the applicable mass range, from about 1 to about 10^{10} GeV, the scattering cross section of dark matter with nucleons is then bounded from above by the latter constraints, and hence must be truly weak, as usually assumed.Comment: 12 pages, 2 figures; minor updates to match published versio

    Mid-mantle deformation inferred from seismic anisotropy

    Get PDF
    With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region

    Development of anisotropic structure in the Earth's lower mantle by solid-state convection

    Full text link
    Seismological observations reveal highly anisotropic patches at the bottom of the Earth's lower mantle, whereas the bulk of the mantle has been observed to be largely isotropic(1-4). These patches have been interpreted to correspond to areas where subduction has taken place in the past or to areas where mantle plumes are upwelling, but the underlying cause for the anisotropy is unknown-both shape-preferred orientation of elastically heterogenous materials(5) and lattice-preferred orientation of a homogeneous material(6-8) have been proposed. Both of these mechanisms imply that large-strain deformation occurs within the anisotropic regions, but the geodynamic implications of the mechanisms differ. Shape-preferred orientation would imply the presence of large elastic (and hence chemical) heterogeneity whereas lattice-preferred orientation requires deformation at high stresses. Here we show, on the basis of numerical modelling incorporating mineral physics of elasticity and development of lattice-preferred orientation, that slab deformation in the deep lower mantle can account for the presence of strong anisotropy in the circum-Pacific region. In this model-where development of the mineral fabric (the alignment of mineral grains) is caused solely by solid-state deformation of chemically homogeneous mantle material-anisotropy is caused by large-strain deformation at high stresses, due to the collision of subducted slabs with the core-mantle boundary.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62804/1/416310a.pd

    Effects of pressure on diffusion and vacancy formation in MgO from non-empirical free-energy integrations

    Full text link
    The free energies of vacancy pair formation and migration in MgO were computed via molecular dynamics using free-energy integrations and a non-empirical ionic model with no adjustable parameters. The intrinsic diffusion constant for MgO was obtained at pressures from 0 to 140 GPa and temperatures from 1000 to 5000 K. Excellent agreement was found with the zero pressure diffusion data within experimental error. The homologous temperature model which relates diffusion to the melting curve describes well our high pressure results within our theoretical framework.Comment: 4 pages, latex, 1 figure, revtex, submitted to PR

    Compositional controls on oceanic plates : geophysical evidence from the MELT area

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 437 (2005): 249-252, doi:10.1038/nature04014.Magnetotelluric (MT) and seismic data, collected during the MELT experiment at the Southern East Pacific Rise (SEPR) constrain the distribution of melt beneath this mid-ocean-ridge spreading center and also the evolution of the oceanic lithosphere during its early cooling history. In this paper, we focus on structure imaged at distances ~100 to 350 km east of the ridge crest, corresponding to seafloor ages of ~1.3 to 4.5 Ma, where the seismic and electrical conductivity structure is nearly constant, independent of age. Beginning at a depth of about 60 km, there is a large increase in electrical conductivity and a change from isotropic to transversely anisotropic electrical structure with higher conductivity in the direction of fast propagation for seismic waves. Because conductive cooling models predict structure that increases in depth with age, extending to about 30 km at 4.5 Ma, we infer that the structure of young oceanic plates is instead controlled by a decrease in water content above 60 km induced by the melting process beneath the spreading center.US participation in the MELT experiment and subsequent analysis was funded by NSF grants through the Marine Geology and Geophysics Program, Ocean Sciences Division

    Precession of a Freely Rotating Rigid Body. Inelastic Relaxation in the Vicinity of Poles

    Get PDF
    When a solid body is freely rotating at an angular velocity Ω{\bf \Omega}, the ellipsoid of constant angular momentum, in the space Ω1,Ω2,Ω3\Omega_1, \Omega_2, \Omega_3, has poles corresponding to spinning about the minimal-inertia and maximal-inertia axes. The first pole may be considered stable if we neglect the inner dissipation, but becomes unstable if the dissipation is taken into account. This happens because the bodies dissipate energy when they rotate about any axis different from principal. In the case of an oblate symmetrical body, the angular velocity describes a circular cone about the vector of (conserved) angular momentum. In the course of relaxation, the angle of this cone decreases, so that both the angular velocity and the maximal-inertia axis of the body align along the angular momentum. The generic case of an asymmetric body is far more involved. Even the symmetrical prolate body exhibits a sophisticated behaviour, because an infinitesimally small deviation of the body's shape from a rotational symmetry (i.e., a small difference between the largest and second largest moments of inertia) yields libration: the precession trajectory is not a circle but an ellipse. In this article we show that often the most effective internal dissipation takes place at twice the frequency of the body's precession. Applications to precessing asteroids, cosmic-dust alignment, and rotating satellites are discussed.Comment: 47 pages, 1 figur

    Geodynamics and Rate of Volcanism on Massive Earth-like Planets

    Full text link
    We provide estimates of volcanism versus time for planets with Earth-like composition and masses from 0.25 to 25 times Earth, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. Here we show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution) but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing - volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. Magma must also crystallize at or near the surface, and the pressure of overlying volatiles must be fairly low, if volatiles are to reach the surface. If volcanism is detected in the Tau Ceti system, and tidal forcing can be shown to be weak, this would be evidence for plate tectonics.Comment: Revised version, accepted by Astrophysical Journa
    • …
    corecore