101 research outputs found

    Modeling Habitat of Freshwater Mussels (Bivalvia:Unionidae) in the Lower Great Lakes 25 Years after the Dreissena Invasion

    Get PDF
    Finding remnant populations of species that are of conservation concern can be difficult, particularly in aquatic habitats. Models of ecological niches can aid in the discovery of refuges. Remnant populations of native freshwater mussels (unionids) have been found in Lakes Erie and St Clair. Our goals were to predict undiscovered refuges in Lake Ontario based on habitat analysis from Lake Erie and to conduct surveys to test those predictions. We built a presence-only model on environmental data including attributes of the benthic zone and shoreline where mussels occurred in Lake Erie. We found a link between small- and large-scale variables related to unionid persistence. Bathymetry, fetch, and shoreline geomorphology contributed most to the model. These variables correspond to local-scale environmental factors important for unionid survival, including presence of vegetation and substrate composition, which explained ∼22% of the variance in presence, abundance, and richness. The model predicted that 0.8% of the near-shore area of Lake Ontario should be habitat for unionids. In surveys at 34 locations on the USA shore of Lake Ontario, we found 1800 unionids of 11 species and showed that areasOntario, a result signifying generality of our model for conservation approaches to freshwater mussels

    Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels

    Get PDF
    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade

    Conservation of freshwater bivalves at the global scale: diversity, threats and research needs

    Get PDF
    Bivalves are ubiquitous members of freshwater ecosystems and responsible for important functions and services. The present paper revises freshwater bivalve diversity, conservation status and threats at the global scale and discusses future research needs and management actions. The diversity patterns are uneven across the globe with hotspots in the interior basin in the United States of America (USA), Central America, Indian subcontinent and Southeast Asia. Freshwater bivalves are affected by multiple threats that vary across the globe; however, pollution and natural system (habitat) modifications being consistently found as the most impacting. Freshwater bivalves are among the most threatened groups in the world with 40% of the species being near threatened, threatened or extinct, and among them the order Unionida is the most endangered. We suggest that global cooperation between scientists, managers, politicians and general public, and application of new technologies (new generation sequencing and remote sensing, among others) will strengthen the quality of studies on the natural history and conservation of freshwater bivalves. Finally, we introduce the articles published in this special issue of Hydrobiologia under the scope of the Second International Meeting on Biology and Conservation of Freshwater Bivalves held in 2015 in Buffalo, New York, USA.This work was supported by FCT—Foundation for Science and Technology, Project 3599—Promote the Scientific Production and Technological Development and Thematic 3599-PPCDT by FEDER as part of the project FRESHCO: multiple implications of invasive species on Freshwater Mussel co-extinction processes (Contract: PTDC/AGRFOR/1627/2014). FCT also supported MLL under Grant (SFRH/BD/115728/2016)

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link

    Limnoperna fortunei versus dreissena polymorpha: Population densities and benthic community impacts of two invasive freshwater bivalves

    Get PDF
    In this study, for the first time, using similar methods, we compared the population density and distribution across different substrate types of Limnoperna fortunei and Dreissena polymorpha, as well as their impacts on the composition of benthic communities. Data on L. fortunei were obtained in Rio Tercero Reservoir, Argentina, whereas studies on D. polymorpha were conducted in North America and Europe. We found that, similar to the zebra mussel, L. fortunei creates high densities on hard substrates in the littoral zone, and avoids soft substrates in the profundal zone; however, the overall population density of L. fortunei in a water body seems to be higher than that of zebra mussels. Additional studies on Limnoperna are needed to confirm this hypothesis. The effect of L. fortunei on macrobenthos is very similar to the effect of D. polymorpha and is associated with an increase in the overall diversity, density, and biomass of native macroinvertebrates in druses compared with bare sediments. The presence of L. fortunei druses in the littoral zones of Río Tercero has increased the average species richness of native benthic invertebrates per sample by almost 70% and their density and biomass by threefold, positively affecting epifaunal organisms and negatively burrowing invertebrates and unionids. In the near future, the freshwaters of North America may be colonized by L. fortunei, resulting in strong impacts on entire invaded ecosystems and devastating impacts on native unionids, especially in the southern regions of the United States, which are not colonized with dreissenids.Fil: Karatayev, Alexander Y.. Suny Buffalo State College; Estados UnidosFil: Burlakova, Lyubov E.. Suny Buffalo State College; Estados Unidos. State University of New York; Estados UnidosFil: Karatayev, Vadim A.. City Honors School; Estados UnidosFil: Boltovskoy, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Eutrophication and <i>Dreissena</i> Invasion as Drivers of Biodiversity: A Century of Change in the Mollusc Community of Oneida Lake

    No full text
    <div><p>Changes in nutrient loading and invasive species are among the strongest human-driven disturbances in freshwater ecosystems, but our knowledge on how they affect the biodiversity of lakes is still limited. We conducted a detailed historical analysis of the mollusc community of Oneida Lake based on our comprehensive lakewide study in 2012 and previous surveys dating back to 1915. In the early 20th century, the lake had a high water clarity, with abundant macrophytes and benthic algae, and hosted the most diverse molluscan community in New York State, including 32 gastropod and 9 unionid species. By the 1960s, lake turbidity increased during a period of anthropogenic eutrophication, resulting in a 38% decline in species richness and a 95% reduction in abundance of native gastropods grazing on benthic algae. Following the invasion of <i>Dreissena</i> spp. in 1991 and subsequent increases in water clarity, native gastropod species richness expanded by 37% and abundance increased 20-fold by 2012. In contrast, filter-feeding unionids were unaffected by increased turbidity during the period of eutrophication but were extirpated by dreissenids. Through contrasting effects on turbidity, eutrophication and <i>Dreissena</i> spp. have likely driven the observed changes in native grazing gastropods by affecting the abundance of light-limited benthic algae. Given the high species richness and ecological importance of benthic grazers, monitoring and managing turbidity is important in preserving molluscan diversity.</p></div
    corecore