849 research outputs found

    EMBRACE@Nancay: An Ultra Wide Field of View Prototype for the SKA

    Full text link
    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the "intensity mapping" experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.Comment: to appear in proceedings of the INFIERI Summer School INtelligent Signal Processing for FrontIEr Research and Industry, Paris 201

    Characterization of a dense aperture array for radio astronomy

    Get PDF
    EMBRACE@Nancay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an extremely large field of view making it the ideal survey instrument. We describe the system,calibration procedures, and results from the prototype.Comment: 17 pages, accepted for publication in A&

    Comparing Geometrical and Delay Radio Emission Heights in Pulsars

    Full text link
    We use a set of carefully selected published average multifrequency polarimetric observations for six bright cone dominated pulsars and devise a method to combine the multifrequency polarization position angle (PPA) sweep traverses. We demonstrate that the PPA traverse is in excellent agreement with the rotating vector model over this broad frequency range confirming that radio emission emanates from perfectly dipolar field lines. For pulsars with central core emission in our sample, we find the peak of central core component to lag the steepest gradient of the PPA traverse at several frequencies. Also significant frequency evolution of the core width is observed over this frequency range. The above facts strongly suggest: (a) the peak core emission does not lie on the fiducial plane containing the dipole magnetic axis and the rotation axis, and (b) the core emission does not originate from the polar cap surface.Comment: Accepted for publication in Astronomy and Astrophysic

    |V|: New insight into the circular polarization of radio pulsars

    Full text link
    We present a study of single pulses from nine bright northern pulsars to investigate the behaviour of circular polarisation, V. The observations were conducted with the Effelsberg 100-m radio telescope at 1.41 GHz and 4.85 GHz and the Westerbork radio telescope at 352 MHz. For the first time, we present the average profile of the absolute circular polarisation |V| in the single pulses. We demonstrate that the average profile of |V| is the distinguishing feature between pulse components that exhibit low V in the single pulses and components that exhibit high V of either handedness, despite both cases resulting in a low mean. We also show that the |V| average profile remains virtually constant with frequency, which is not generally the case for V, leading us to the conclusion that |V| is a key quantity in the pulsar emission problem.Comment: 5 pages, accepted for publication in MNRAS letter

    Correlated emission and spin-down variability in radio pulsars

    Full text link
    The recent revelation that there are correlated period derivative and pulse shape changes in pulsars has dramatically changed our understanding of timing noise as well as the relationship between the radio emission and the properties of the magnetosphere as a whole. Using Gaussian processes we are able to model timing and emission variability using a regression technique that imposes no functional form on the data. We revisit the pulsars first studied by Lyne et al. (2010). We not only confirm the emission and rotational transitions revealed therein, but reveal further transitions and periodicities in 8 years of extended monitoring. We also show that in many of these objects the pulse profile transitions between two well-defined shapes, coincident with changes to the period derivative. With a view to the SKA and other telescopes capable of higher cadence we also study the detection limitations of period derivative changes.Comment: 4 pages, 2 Figures, Proceedings of IAU Symposium 337 "Pulsar Astrophysics - The Next 50 Years" held at Jodrell Bank Observatory, UK Sept. 4-8 201

    Radio spectrum of the AXP J1810-197 and of its profile components

    Full text link
    As part of a European Pulsar Network (EPN) multi-telescope observing campaign, we performed simultaneous multi-frequency observations at 1.4, 4.9 and 8.4 GHz during July 2006 and quasi-simultaneous multi-frequency observations from Decem- ber 2006 until July 2007 at 2.7, 4.9, 8.4, 14.6 and 32 GHz, in order to obtain flux density measurements and spectral features of the 5.5-sec radio-emitting magnetar AXP J1810-197. We monitored the spectral evolution of its pulse shape which consists of a main pulse (MP) and an interpulse (IP). We present the flux density spectrum of the average profile and of the separate pulse components of this first-known radio-emitting transient anomalous X-ray pulsar. We observe a decrease of the flux density by a factor of 10 within 8 months and follow the disappearance of one of the two main components. Although the spectrum is generally flat, we observe large fluctuations of the spectral index with time. For that reason we have made some measurements of modulation indices for individual pulses in order to also investigate the origin of these fluctuations.Comment: accepted for publication in MNRAS, 9 pages, 7 figures, 5 table

    Stokes tomography of radio pulsar magnetospheres. I. Linear polarization

    Full text link
    Polarimetric studies of pulsar radio emission traditionally concentrate on how the Stokes vector (I, Q, U, V) varies with pulse longitude, with special emphasis on the position angle (PA) swing of the linearly polarized component. The interpretation of the PA swing in terms of the rotating vector model is limited by the assumption of an axisymmetric magnetic field and the degeneracy of the output with respect to the orientation and magnetic geometry of the pulsar; different combinations of the latter two properties can produce similar PA swings. This paper introduces Stokes phase portraits as a supplementary diagnostic tool with which the orientation and magnetic geometry can be inferred more accurately. The Stokes phase portraits feature unique patterns in the I-Q, I-U, and Q-U planes, whose shapes depend sensitively on the magnetic geometry, inclination angle, beam and polarization patterns, and emission altitude. We construct look-up tables of Stokes phase portraits and PA swings for pure and current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models, L/I = \cos \theta_0 and L/I = \sin \theta_0, where \theta_0 is the colatitude of the emission point. We compare our look-up tables to the measured phase portraits of 24 pulsars in the European Pulsar Network online database. We find evidence in 60% of the objects that the radio emission region may depart significantly from low altitudes, even when the PA swing is S-shaped and/or the pulse-width-period relation is well satisfied. On the other hand, the data are explained adequately if the emission altitude exceeds ~10% of the light cylinder radius. We conclude that Stokes phase portraits should be analysed concurrently with the PA swing and pulse profiles in future when interpreting radio pulsar polarization data.Comment: 60 pages, 58 figures, submitted to MNRAS, accepted 13 Oct 201
    corecore