102 research outputs found

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201

    RDFViewS: A Storage Tuning Wizard for RDF Applications

    Get PDF
    In recent years, the significant growth of RDF data used in numerous applications has made its efficient and scalable manipulation an important issue. In this paper, we present RDFViewS, a system capable of choosing the most suitable views to materialize, in order to minimize the query response time for a specific SPARQL query workload, while taking into account the view maintenance cost and storage space constraints. Our system employs practical algorithms and heuristics to navigate through the search space of potential view configurations, and exploits the possibly available semantic information - expressed via an RDF Schema - to ensure the completeness of the query evaluation

    The ViP2P Platform: XML Views in P2P

    Get PDF
    The growing volumes of XML data sources on the Web or produced by enterprises, organizations etc. raise many performance challenges for data management applications. In this work, we are concerned with the distributed, peer-to-peer management of large corpora of XML documents, based on distributed hash table (or DHT, in short) overlay networks. We present ViP2P (standing for Views in Peer-to-Peer), a distributed platform for sharing XML documents based on a structured P2P network infrastructure (DHT). At the core of ViP2P stand distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. ViP2P allows user queries to be evaluated over XML documents published by peers in two modes. First, a long-running subscription mode, when a query can be registered in the system and receive answers incrementally when and if published data matches the query. Second, queries can also be asked in an ad-hoc, snapshot mode, where results are required immediately and must be computed based on the results of other long-running, subscription queries. ViP2P innovates over other similar DHT-based XML sharing platforms by using a very expressive structured XML query language. This expressivity leads to a very flexible distribution of XML content in the ViP2P network, and to efficient snapshot query execution. ViP2P has been tested in real deployments of hundreds of computers. We present the platform architecture, its internal algorithms, and demonstrate its efficiency and scalability through a set of experiments. Our experimental results outgrow by orders of magnitude similar competitor systems in terms of data volumes, network size and data dissemination throughput.Comment: RR-7812 (2011

    Kaskade: Graph Views for Efficient Graph Analytics

    Full text link
    Graphs are an increasingly popular way to model real-world entities and relationships between them, ranging from social networks to data lineage graphs and biological datasets. Queries over these large graphs often involve expensive subgraph traversals and complex analytical computations. These real-world graphs are often substantially more structured than a generic vertex-and-edge model would suggest, but this insight has remained mostly unexplored by existing graph engines for graph query optimization purposes. Therefore, in this work, we focus on leveraging structural properties of graphs and queries to automatically derive materialized graph views that can dramatically speed up query evaluation. We present KASKADE, the first graph query optimization framework to exploit materialized graph views for query optimization purposes. KASKADE employs a novel constraint-based view enumeration technique that mines constraints from query workloads and graph schemas, and injects them during view enumeration to significantly reduce the search space of views to be considered. Moreover, it introduces a graph view size estimator to pick the most beneficial views to materialize given a query set and to select the best query evaluation plan given a set of materialized views. We evaluate its performance over real-world graphs, including the provenance graph that we maintain at Microsoft to enable auditing, service analytics, and advanced system optimizations. Our results show that KASKADE substantially reduces the effective graph size and yields significant performance speedups (up to 50X), in some cases making otherwise intractable queries possible

    Viewing a World of Annotations through AnnoVIP

    Get PDF
    National audienceLe développement de contenus en format numériques a conduit à l'apparition de corpus de documents structurés interconnectés (tels que les pages HTML ou XML) et d'annotations sémantiques, typiquement exprimées en RDF, qui rajoutent des informations sur ces documents. Les annotations sont souvent produites indépendamment des documents. Nous présentons AnnoVIP, une plateforme pair-à-pair capable d'exploiter de manière efficace un corpus de documents annotés, s'appuyant sur un nouveau modèle de vues matérialisées XML, déployées en pair-à-pair

    Late Onset of Severe Symptoms in a Patient with Wolff-Parkinson-White Syndrome with Misleading ECG Pattern of the Accessory Pathway Origin Undergoing Successful Ablation

    Get PDF
    The case of a female patient with symptomatic Wolff-Parkinson-White syndrome is presented with very late onset of symptoms at the age of 65 years, who had an apparent left-sided posteroseptal accessory pathway, which was ablated via a right-sided approach. A subepicardial location was strongly suspected within the coronary sinus ostium at the origin of the middle cardiac vein by applying both ECG and fluoroscopic criteria. Rhythmos 2016;11(3):73-75.
    • …
    corecore