
HAL Id: inria-00624998
https://hal.inria.fr/inria-00624998

Submitted on 20 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDFViewS: A Storage Tuning Wizard for RDF
Applications

François Goasdoué, Konstantinos Karanasos, Julien Leblay, Ioana Manolescu

To cite this version:
François Goasdoué, Konstantinos Karanasos, Julien Leblay, Ioana Manolescu. RDFViewS: A Storage
Tuning Wizard for RDF Applications. Journées de Bases de Données Avancées, Oct 2011, Rabat,
Morocco. �inria-00624998�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49960687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00624998
https://hal.archives-ouvertes.fr


RDFViewS: A Storage Tuning Wizard for RDF
Applications ∗

François Goasdoué Konstantinos Karanasos Julien Leblay
Ioana Manolescu

Leo team, INRIA Saclay and LRI, Université Paris-Sud 11

Parc Club Orsay Université, 4 rue J. Monod, 91893 Orsay Cedex, France

firstname.lastname@inria.fr

Abstract

L’émergence du Web sémantique et la multiplication des applications qui y sont liées
nous conduisent à rechercher les moyens d’interroger efficacement de grands volumes de
données RDF. Dans cette démonstration, nous présentons RDFViewS, un système permet-
tant de trouver automatiquement le meilleur ensemble de vues à matérialiser, pour un en-
semble de requêtes SPARQL donné. La solution doit minimiser conjointement le temps
d’évaluation des requêtes, le coût de maintenance des vues et l’espace qu’elles occu-
pent. L’algorithme sur lequel repose notre système explore un espace d’états au moyen
de stratégies et d’heuristiques, en quête d’une configuration optimale. Ce faisant, il tient
compte d’éventuels schémas RDFS accompagnant les données pour garantir la complétude
du résultat des requêtes.

Keywords gestion de données RDF, vues matérialisées, optimisation de requêtes, RDFS.

1 Outline
RDF data is increasingly used in data management applications related to traditional Computer
Science topics, such as search engines, semantic annotations, social tagging etc. RDF is being
used as well in contexts beyond this traditional scope, for instance, it is becoming prevalent in
many Life Science and in particular BioInformatics applications. These and other applications
have significantly increased the volumes of RDF data to be handled. The size, the complexity
and the irregularity of this data pose significant challenges to the task of building an efficient
query evaluation engine.

RDF data consists of triples of the form (subject, property, object). This seemingly simple
data model leads to complex queries and expensive evaluation, since any meaningful question
requires forming chains of several triples, which are translated to many-join queries over a
single, huge table containing all the triples. One approach taken to handle such large data vol-
umes consists in mapping the data into one or several relations, and storing them in a relational

∗This work has been partially funded by Agence Nationale de la Recherche, decision ANR-08-DEFIS-004.

1



database management system (RDBMS), possibly endowed with specific indexes [1, 9]. Then,
RDF queries expressed in SPARQL can be translated to SQL queries [2], which are evaluated
by the RDBMS. Another approach consists in developing RDF-specific stores and query pro-
cessors [7], which still share some of the standard notions and features of relational storage
engines.

These efforts aim at providing a generic, one-size-fits-all storage model for RDF. However,
decades of research and development of RDBMSs have shown that huge performance gains
can be achieved by tuning the storage to the data sets and to the requirements of specific appli-
cations. This is typically achieved by establishing materialized views and/or indices specific to
the data and workload [8].

Another important aspect of RDF data management is that rich semantic information can
be associated to the data sets, e.g., in the form of an RDF Schema. In this situation, schema-
based reasoning may lead to finding answers to a query, which would simply not be found
when querying the data alone. Thus, the interpretation of RDF queries may be affected by
the existence of associated semantics, and this must be considered when designing a query-
inspired set of views. For instance, if an RDF Schema specifies that a VisitingProfessor is
also a Professor, then such visiting professors should be taken into account in the answers of
the question “What are the addresses of professors working in French Universities?”. In the
absence of a schema, they would not be included.

We propose to demonstrate RDFViewS, a system that focuses on automatically choosing
the materialized views which are most appropriate for a given data set and query workload.
The tool provides many options to guide the search, into which it also incorporates the insights
brought by an RDF Schema, if one is available. RDFViewS outputs a set of proposed material-
ized views (which are automatically created within an RDBMS), as well as a set of rewritings
of the original workload, in terms of these materialized views. RDFViewS can be seen as a
storage tuning wizard for RDF data, to be used in conjunction with off-the-shelf RDBMSs.
The tool’s various steps and options can be easily inspected and controlled via a GUI by RD-
FViewS’ target users: administrators of large RDF databases.

RDFViewS was originally presented in [4]. Our work on view selection for RDF databases,
including the algorithms behind RDFViewS, is presented in detail in [5]. An initial version
of [5] also appeared in [3].

2 Problem Model
RDFViewS takes as input a set of conjunctive SPARQL queries. Each query is endowed with
a weight, reflecting its relative importance (e.g. how often it is evaluated).

We model our problem as a search state optimization problem, based on an existing pro-
posal for selecting views to materialize in a relational setting [8], which we adapted to the
peculiarities of the RDF model. For a given query workload Q, we define a state as the pair
Si(Q) = 〈Vi, Ri〉, where Vi is the set of views to materialize and Ri the rewritings needed to
answer the queries of Q using exclusively the views in Vi. We use four transitions, which can
be applied to a given state and yield a new one, namely selection cut, join cut, view break and
view fusion. Intuitively, the first three aim at relaxing the queries: selection cut, join cut by
removing some predicates, and view break by splitting a query into smaller ones, possibly with
overlapping predicates and atoms. The last transition attempts to fuse two candidate views,

2



Figure 1: RDFViewS architecture.

replacing them with a single one. The relaxation steps help finding common sub-expressions
among initial queries, such that view fusion may then be applied. If the workload queries have
common sub-queries, these will be identified as useful views to materialize.

The cost of each state is assessed using a cost function, which reflects the query execution
time, the view maintenance cost and the space needed for materializing the views of the state.
Starting from an initial state, we apply the transitions and navigate in the search space according
to a search strategy. As the initial state of our search, we choose the one that proposes to
materialize exactly the query workload (best execution time). At the end of the search, we
return the state with the minimum combined cost.

3 System Architecture
The architecture of RDFViewS is depicted in Figure 1. The RDF data is initially stored into an
RDBMS as a single triple table (TT); for efficiency, and following many similar works [6], the
table is dictionary-encoded, i.e., URIs and string constants are assigned distinct integers, and
the TT table stores triples of integers. The database administrator (DBA) uses RDFViewS to
further tune the store. To this end, she provides the SPARQL query workload to the Workload
Processor through a graphical interface. In the presence of an RDF Schema, the queries are
reformulated, compiling the knowledge of the Schema inside them and transforming each query
to a union of queries [5]. The (possibly reformulated) queries are used to create the initial state
of the search.

The initial state is then loaded to the States Navigator, which constitutes the gist of our
system. We have devised exhaustive strategies that navigate through the whole search space.
However, as the problem we address is known to be well above exponential, we employ heuris-
tics which significantly prune the search space. Moreover, we provide the option to apply some

3



Figure 2: Screen captures of the wizard interface: (a) Query Processor, (b) State Navigator’s
settings, (c) selected views with statistics

additional stop conditions: we identify states that have some specific characteristics and we do
not allow more transitions to be applied on these states. More details about the search strategies
can be found in [5].

Once the search is finished, we obtain the best state according to our quality function and we
materialize the views of this state, after translating them to SQL. Then, we push the rewritings
contained in the best state to the Query Executor, which stores them for future use. Whenever
a user issues to the system a query from the workload, the Query Executor uses the stored
rewritings to efficiently answer the query by using the already materialized views.

4 Demonstration Scenario
Our system has been fully implemented in Java 6. The triple table and the materialized views
are stored in PostgreSQL v8.4.4. We have built a stand-alone interface which enables users
to interact with the system, extensively parameterize it and follow in detail the view selection
process. Screen captures of Figure 2 depict key stages of the application workflow. More screen
captures of the system can be found at the RDFViewS website1.

1http://rdfvs.saclay.inria.fr

4



Demo attendees will play the role of a database administrator. Using the interface, they will
first choose one of the pre-loaded RDF datasets (among others, some of the most widely-used
RDF datasets will be available: Barton, Yago, Uniprot and LUBM), and the query workload
for which they want to tune the database. They may also load their own datasets, modify the
existing query workloads or add new ones (Figure 2.a). The queries can be modified either by
using a SPARQL editor or through a visual editor we have created.

Before initializing the search for the best view configuration, attendees will define some
additional details of the searching process, according to their specific preferences, and pick
the RDF Schema(s) they wish to use (Figure 2.b). In particular, they will choose whether
they prefer a quick search, or a search that lasts longer but guarantees the optimal solution.
Furthermore, they will tune the cost function by adjusting the weights of its components (giving
more importance to the query execution time, to the view maintenance or to the space needed).

At the end of the search, the selected views are displayed, together with the cost gains
(Figure 2.c). Moreover, a graphical overview of the search space can also be shown. This
information acts as feedback to the user, which may choose to tune differently the cost functions
in a subsequent search.

To verify the performance benefits brought by RDFViewS, attendees will then act as simple
users issuing queries, which will be first answered against the triple table and then by exploiting
the materialized views.

References
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web data management

using vertical partitioning. In VLDB, 2007.

[2] A. Chebotko, S. Lu, and F. Fotouhi. Semantics preserving SPARQL-to-SQL translation. Data
Knowl. Eng., 68(10), 2009.

[3] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. Materialized View-Based Processing of
RDF Queries. In Bases de Données Avancées, Toulouse France, 2010.

[4] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. RDFViewS: a storage tuning wizard for
RDF applications. In CIKM, 2010.

[5] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View selection in semantic web databases.
PVLDB, 5(1), 2012.

[6] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. Proc. of VLDB, 1(1), 2008.

[7] T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs. In SIGMOD,
New York, NY, USA, 2009. ACM.

[8] D. Theodoratos, S. Ligoudistianos, and T. K. Sellis. View selection for designing the global data
warehouse. Data Knowl. Eng., 39(3), 2001.

[9] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web data manage-
ment. Proc. of VLDB, 1(1), 2008.

5


