66 research outputs found

    Characterization of Planetary Atmospheres

    Get PDF
    After the discovery of the first exoplanet in 1990’s and a fast growing number of discoveries since then, there have been many attempts to observe and characterize their atmospheres. In particular, water and methane have been the focus of many investigations due to their relevance to the origin of life and habitability, as well as their major roles to shape the structure of planetary atmospheres. Abundances retrieved for these species can be also used as a tracer of carbon-to-oxygen ratio (C/O) and metallicity of these atmospheres; hence potentially linking the formation scenarios with the observations. Water’s spectral signature is everywhere, but despite many efforts, there has been only one robust detection of methane and only recently. The question is, “where is methane?”. By applying a hierarchical modelling approach (utilising more than 177,000 thermochemical equilibrium cloud-free, disequilibrium cloud-free, and thermochemical equilibrium cloudy models) we predict that there are four classes of irradiated gaseous planets; two of them (Class-I and Class-II; Teff<1650 K) likely to show signatures of CH4 in their transmission spectra, if cloudy-free and C/O above a certain threshold (aka the “Methane Valley”). The effect of disequilibrium processes on the classification found to be modest with a more continuous transition between Class-II and III planets. Clouds, however, heat-up the deeper parts of Class-I and Class-II planets; removing CH4 from the photosphere. Simultaneously, clouds obscure any molecular features; hence making the observation of methane even more challenging

    Presence of liquid water during the evolution of exomoons orbiting ejected free-floating planets

    Get PDF
    Free-floating planets (FFPs) can result from dynamical scattering processes happening in the first few million years of a planetary system's life. Several models predict the possibility, for these isolated planetary-mass objects, to retain exomoons after their ejection. The tidal heating mechanism and the presence of an atmosphere with a relatively high optical thickness may support the formation and maintenance of oceans of liquid water on the surface of these satellites. In order to study the timescales over which liquid water can be maintained, we perform dynamical simulations of the ejection process and infer the resulting statistics of the population of surviving exomoons around free-floating planets. The subsequent tidal evolution of the moons' orbital parameters is a pivotal step to determine when the orbits will circularize, with a consequential decay of the tidal heating. We find that close-in (a25a \lesssim 25 RJ_{\rm J}) Earth-mass moons with CO2_2-dominated atmospheres could retain liquid water on their surfaces for long timescales, depending on the mass of the atmospheric envelope and the surface pressure assumed. Massive atmospheres are needed to trap the heat produced by tidal friction that makes these moons habitable. For Earth-like pressure conditions (p0p_0 = 1 bar), satellites could sustain liquid water on their surfaces up to 52 Myr. For higher surface pressures (10 and 100 bar), moons could be habitable up to 276 Myr and 1.6 Gyr, respectively. Close-in satellites experience habitable conditions for long timescales, and during the ejection of the FFP remain bound with the escaping planet, being less affected by the close encounter.Comment: 21 pages, 12 figures, accepted for publication on International Journal of Astrobiolog

    A Pilot Survey of an M Dwarf Flare Star with Swift's UV Grism

    Full text link
    The near-ultraviolet (NUV) spectral region is a useful diagnostic for stellar flare physics and assessing the energy environment of young exoplanets, especially as relates to prebiotic chemistry. We conducted a pilot NUV spectroscopic flare survey of the young M dwarf AU Mic with the Neil Gehrels Swift Observatory's UltraViolet and Optical Telescope. We detected four flares and three other epochs of significantly elevated count rates during the 9.6 hours of total exposure time, consistent with a NUV flare rate of \sim0.5 hour1^{-1}. The largest flare we observed released a minimum energy of 6×\times1033^{33} erg between 1730-5000 \r{A}. All flares had durations longer than the \sim14-17 minute duration of each Swift visit, making measuring total flare energy and duration infeasible.Comment: Published in Research Notes of the AAS (RNAAS

    Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b

    Get PDF
    Hot gas giant exoplanets can lose part of their atmosphere due to strong stellar irradiation, affecting their physical and chemical evolution. Studies of atmospheric escape from exoplanets have mostly relied on space-based observations of the hydrogen Lyman-{\alpha} line in the far ultraviolet which is strongly affected by interstellar absorption. Using ground-based high-resolution spectroscopy we detect excess absorption in the helium triplet at 1083 nm during the transit of the Saturn-mass exoplanet WASP-69b, at a signal-to-noise ratio of 18. We measure line blue shifts of several km/s and post transit absorption, which we interpret as the escape of part of the atmosphere trailing behind the planet in comet-like form. [Additional notes by authors: Furthermore, we provide upper limits for helium signals in the atmospheres of the exoplanets HD 209458b, KELT-9b, and GJ 436b. We investigate the host stars of all planets with detected helium signals and those of the three planets we derive upper limits for. In each case we calculate the X-ray and extreme ultraviolet flux received by these planets. We find that helium is detected in the atmospheres of planets (orbiting the more active stars and) receiving the larger amount of irradiation from their host stars.]Comment: Submitted to Science on 14 March 2018; Accepted by Science on 16 November 2018; Published by Science on 6 December 2018. This is the author's version of the work. It is posted here by permission of the AAAS for personal use. The definitive version was published in Science, on 6 December 2018 - Report: pages 21 (preprint), 4 figures - Supplementary materials: 22 pages, 10 figures, 3 table

    Stellar Astrophysics and Exoplanet Science with the Maunakea Spectroscopic Explorer (MSE)

    Full text link
    The Maunakea Spectroscopic Explorer (MSE) is a planned 11.25-m aperture facility with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. A rebirth of the 3.6m Canada-France-Hawaii Telescope on Maunakea, MSE will use 4332 fibers operating at three different resolving powers (R ~ 2500, 6000, 40000) across a wavelength range of 0.36-1.8mum, with dynamical fiber positioning that allows fibers to match the exposure times of individual objects. MSE will enable spectroscopic surveys with unprecedented scale and sensitivity by collecting millions of spectra per year down to limiting magnitudes of g ~ 20-24 mag, with a nominal velocity precision of ~100 m/s in high-resolution mode. This white paper describes science cases for stellar astrophysics and exoplanet science using MSE, including the discovery and atmospheric characterization of exoplanets and substellar objects, stellar physics with star clusters, asteroseismology of solar-like oscillators and opacity-driven pulsators, studies of stellar rotation, activity, and multiplicity, as well as the chemical characterization of AGB and extremely metal-poor stars.Comment: 31 pages, 11 figures; To appear as a chapter for the Detailed Science Case of the Maunakea Spectroscopic Explore
    corecore