86 research outputs found

    Molecular Pathology of Pancreatic Cancer.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a biologically aggressive malignancy showing a remarkable resistance to existing therapies and is often diagnosed at an advanced stage, leaving only about 15-20% of patients with an option for surgical resection [...]

    Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC

    High tumor mutational burden (TMB) identifies a microsatellite stable pancreatic cancer subset with prolonged survival and strong anti-tumor immunity.

    Get PDF
    AIM Tumor mutational burden (TMB: somatic mutations per megabase, mut/Mb) predicts the efficacy of immunotherapy. Here, we link TMB levels with the activation of immune pathways and intratumoral immune responses in pancreatic adenocarcinoma (PDAC) to explore immunoarchitectural patterns associated with high TMB. METHODS We assessed TMB in 161 resected, microsatellite stable (MSS) PDACs, including 41 long-term survivors (LTS). Five microsatellite instable (MSI-high) cases were also assessed. Cases were classified into TMB-high (≄10 mut/Mb), TMB-intermediate (>5 < 10 mut/Mb), and TMB-low (≀5 mut/Mb) categories. Tumors additionally underwent mRNA in situ hybridization for immune pathway genes and were immunoprofiled by multiplex immunofluorescence followed by automated image analysis. RESULTS We detected 12 TMB-high, 28 TMB-intermediate, and 121 TMB-low cases. TMB-high tumors comprised ten LTSs (10/41; 24%) and two conventional PDACs (2/120; 1.7%). They exhibited the highest T cell density with significantly increased CD3+CD4+T helper and CD208+dendritic cell (DC) counts, compared to all other cases. CD3+CD8+cytotoxic T cells were significantly closer to tumor cells and T helper cells closer to DCs in TMB-high PDACs. Immune pathways involved in T cell activation, immune cell adhesion/migration, antigen presentation, and cytokine signaling were upregulated in most TMB-high and many TMB-intermediate tumors. ARID1A and ERBB4 alterations were more frequent in TMB-high PDACs. All MSI-high PDACs were TMB-high. CONCLUSIONS TMB-high cases frequently belong to specific PDAC subsets with prolonged survival such as LTSs and MSI-high PDACs. They display strong anti-tumor immune responses fueled by a T helper cell/DC-mediated priming of the cytotoxic T cells. Moreover, they frequently harbor further actionable alterations

    a retrospective cohort study

    Get PDF
    Background Metastasis of colorectal cancer (CRC) is directly linked to patient survival. We previously identified the novel gene Metastasis Associated in Colon Cancer 1 (MACC1) in CRC and demonstrated its importance as metastasis inducer and prognostic biomarker. Here, we investigate the geographic expression pattern of MACC1 in colorectal adenocarcinoma and tumor buds in correlation with clinicopathological and molecular features for improvement of survival prognosis. Methods We performed geographic MACC1 expression analysis in tumor center, invasive front and tumor buds on whole tissue sections of 187 well-characterized CRCs by immunohistochemistry. MACC1 expression in each geographic zone was analyzed with Mismatch repair (MMR)-status, BRAF/KRAS- mutations and CpG-island methylation. Results MACC1 was significantly overexpressed in tumor tissue as compared to normal mucosa (p < 0.001). Within colorectal adenocarcinomas, a significant increase of MACC1 from tumor center to front (p = 0.0012) was detected. MACC1 was highly overexpressed in 55% tumor budding cells. Independent of geographic location, MACC1 predicted advanced pT and pN-stages, high grade tumor budding, venous and lymphatic invasion (p < 0.05). High MACC1 expression at the invasive front was decisive for prediction of metastasis (p = 0.0223) and poor survival (p = 0.0217). The geographic pattern of MACC1 did not correlate with MMR-status, BRAF/KRAS- mutations or CpG-island methylation. Conclusion MACC1 is differentially expressed in CRC. At the invasive front, MACC1 expression predicts best aggressive clinicopathological features, tumor budding, metastasis formation and poor survival outcome

    Pancreatic intraductal papillary mucinous neoplasm with concomitant heterotopic pancreatic cystic neoplasia of the stomach: a case report and review of the literature

    Get PDF
    A 60-year-old Caucasian male underwent a total pancreatectomy for a mixed type pancreatic intraductal papillary mucinous neoplasm (IPMN) arising in the main and secondary pancreatic ducts. During surgery, a subserosal polypoid mass was noted at the greater curvature of the gastric antrum and was enucleated. This mass was proven to be heterotopic pancreatic tissue with cystic neoplasia of the IPMN histologic subtype. Through an extensive search of the literature, we found that this is the first case ever reported with simultaneous existence of IPMN changes, in the main and secondary ducts of the orthotopic pancreas and in the heterotopic pancreatic tissue of the gastric wall

    GKAP Acts as a Genetic Modulator of NMDAR Signaling to Govern Invasive Tumor Growth.

    Get PDF
    Genetic linkage analysis previously suggested that GKAP, a scaffold protein of the N-methyl-D-aspartate receptor (NMDAR), was a potential modifier of invasion in a mouse model of pancreatic neuroendocrine tumor (PanNET). Here, we establish that GKAP governs invasive growth and treatment response to NMDAR inhibitors of PanNET via its pivotal role in regulating NMDAR pathway activity. Combining genetic knockdown of GKAP and pharmacological inhibition of NMDAR, we implicate as downstream effectors FMRP and HSF1, which along with GKAP demonstrably support invasiveness of PanNET and pancreatic ductal adenocarcinoma cancer cells. Furthermore, we distilled genome-wide expression profiles orchestrated by the NMDAR-GKAP signaling axis, identifying transcriptome signatures in tumors with low/inhibited NMDAR activity that significantly associate with favorable patient prognosis in several cancer types

    SOX9 Triggers Different Epithelial to Mesenchymal Transition States to Promote Pancreatic Cancer Progression.

    Get PDF
    BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers mainly due to spatial obstacles to complete resection, early metastasis and therapy resistance. The molecular events accompanying PDAC progression remain poorly understood. SOX9 is required for maintaining the pancreatic ductal identity and it is involved in the initiation of pancreatic cancer. In addition, SOX9 is a transcription factor linked to stem cell activity and is commonly overexpressed in solid cancers. It cooperates with Snail/Slug to induce epithelial-mesenchymal transition (EMT) during neural development and in diseases such as organ fibrosis or different types of cancer. METHODS We investigated the roles of SOX9 in pancreatic tumor cell plasticity, metastatic dissemination and chemoresistance using pancreatic cancer cell lines as well as mouse embryo fibroblasts. In addition, we characterized the clinical relevance of SOX9 in pancreatic cancer using human biopsies. RESULTS Gain- and loss-of-function of SOX9 in PDAC cells revealed that high levels of SOX9 increased migration and invasion, and promoted EMT and metastatic dissemination, whilst SOX9 silencing resulted in metastasis inhibition, along with a phenotypic reversion to epithelial features and loss of stemness potential. In both contexts, EMT factors were not altered. Moreover, high levels of SOX9 promoted resistance to gemcitabine. In contrast, overexpression of SOX9 was sufficient to promote metastatic potential in K-Ras transformed MEFs, triggering EMT associated with Snail/Slug activity. In clinical samples, SOX9 expression was analyzed in 198 PDAC cases by immunohistochemistry and in 53 patient derived xenografts (PDXs). SOX9 was overexpressed in primary adenocarcinomas and particularly in metastases. Notably, SOX9 expression correlated with high vimentin and low E-cadherin expression. CONCLUSIONS Our results indicate that SOX9 facilitates PDAC progression and metastasis by triggering stemness and EMT

    HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity

    Get PDF
    HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its oncosuppressing activity through its p53-dependent and -independent apoptotic function. However, a HIPK2 role in cell proliferation has also been described. In particular, HIPK2 is required to complete cytokinesis and impaired HIPK2 expression results in cytokinesis failure and tetraploidization. Since tetraploidy may yield to aneuploidy and chromosomal instability (CIN), we asked whether unscheduled tetraploidy caused by loss of HIPK2 might contribute to tumorigenicity. Here, we show that, compared to Hipk2+/+ mouse embryo fibroblasts (MEFs), hipk2-null MEFs accumulate subtetraploid karyotypes and develop CIN. Accumulation of these defects inhibits proliferation and spontaneous immortalization of primary MEFs whereas increases tumorigenicity when MEFs are transformed by E1A and Harvey-Ras oncogenes. Upon mouse injection, E1A/Ras-transformed hipk2-null MEFs generate tumors with genetic alterations resembling those of human cancers derived by initial tetraploidization events, such as pancreatic adenocarcinoma. Thus, we evaluated HIPK2 expression in different stages of pancreatic transformation. Importantly, we found a significant correlation among reduced HIPK2 expression, high grade of malignancy, and high nuclear size, a marker of increased ploidy. Overall, these results indicate that HIPK2 acts as a caretaker gene, whose inactivation increases tumorigenicity and causes CIN by cytokinesis failure
    • 

    corecore