89 research outputs found
Overcoming Resistance to Immunotherapy in Head and Neck Cancer Using Radiation: A Review.
Radiation therapy remains at the center of head and neck cancer treatment. With improvements in treatment delivery, radiation therapy has become an affective ablative modality for head and neck cancers. Immune checkpoint inhibitors are now also playing a more active role both in the locally advanced and metastatic setting. With improved systemic options, local noninvasive modalities including radiation therapy are playing a critical role in overcoming resistance in head and neck cancer. The aim of this review is to describe the role of radiation therapy in modulating the tumor microenvironment and how radiation dose, fractionation and treatment field can impact the immune system and potentially effect outcomes when combined with immunotherapy. The review will encompass several common scenarios where radiation is used to improve outcomes and overcome potential resistance that may develop with immunotherapy in head and neck squamous cell carcinoma (HNSCC), including upfront locally advanced disease receiving definitive radiation and recurrent disease undergoing re-irradiation. Lastly, we will review the potential toxicities of combined therapy and future directions of their role in the management of HNSCC
Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment
Radiation therapy has been used for many years to treat tumors based on its DNA-damage-mediated ability to kill cells. More recently, RT has been shown to exert beneficial modulatory effects on immune responses, such as triggering immunogenic cell death, enhancing antigen presentation, and activating cytotoxic T cells. Consequently, combining radiation therapy with immunotherapy represents an important area of research. Thus far, immune-checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been the focus of many research studies and clinical trials. The available data suggest that such immunotherapies are enhanced when combined with radiation therapy. However, treatment resistance, intrinsic or acquired, is still prevalent. Various theories as to how to enhance these combination therapies to overcome treatment resistance have been proposed. In this review, we focus on the principles surrounding radiation therapy's positive and negative effects on the tumor microenvironment. We explore mechanisms underlying radiation therapy's synergistic and antagonistic effects on immune responses and provide a base of knowledge for radio-immunology combination therapies to overcome treatment resistance. We provide evidence for targeting regulatory T cells, tumor-associated macrophages, and cancer-associated fibroblasts in combination radio-immunotherapies to improve cancer treatment
Light-Responsive Polymeric Micellar Nanoparticles with Enhanced Formulation Stability.
Light-sensitive polymeric micelles have recently emerged as promising drug delivery systems for spatiotemporally controlled release of payload at target sites. Here, we developed diazonaphthoquinone (DNQ)-conjugated micellar nanoparticles that showed a change in polarity of the micellar core from hydrophobic to hydrophilic under UV light, releasing the encapsulated anti-cancer drug, doxetaxel (DTX). The micelles exhibited a low critical micelle concentration and high stability in the presence of bovine serum albumin (BSA) solution due to the hydrophobic and π-π stacking interactions in the micellar core. Cell studies showed enhanced cytotoxicity of DTX-loaded micellar nanoparticles upon irradiation. The enhanced stability would increase the circulation time of the micellar nanoparticles in blood, and enhance the therapeutic effectiveness for cancer therapy
Survival Outcomes of Patients Treated with Hypofractionated Stereotactic Body Radiation Therapy for Parotid Gland Tumors: a Retrospective Analysis
Background: to review a single-institution experience with the management of parotid malignancies treated by fractionated stereotactic body radiosurgery (SBRT). Findings: Between 2003 and 2011, 13 patients diagnosed with parotid malignancies were treated with adjuvant or definitive SBRT to a median dose of 33 Gy (range 25–40 Gy). There were 11 male and two female patients with a median age of 80. Ten patients declined conventional radiation treatment and three patients had received prior unrelated radiation therapy to neighboring structures with unavailable radiation records. Six patients were treated with definitive intent while seven patients were treated adjuvantly for adverse surgical or pathologic features. Five patients had clinical or pathologic evidence of lymph node disease. Conclusion: at a median follow-up of 14 months only one patient failed locally, and four failed distantly. The actuarial 2-year overall survival, progression-free survival, and local-regional control rates were 46, 84, and 47%, respectively. Statistical analysis revealed surgery as a positive predictor of overall survival while presence of gross disease was a negatively correlated factor (p < 0.05)
Intelligent IoT- and UAV-Assisted Architecture for Pipeline Monitoring in OGI
With the advent of the Internet of Things (IoT) and unmanned aerial vehicles (UAVs) in industrial application scenarios, oil and gas industry (OGI) automation is undergoing a remarkable transformation. Existing monitoring methods like IoT sensor-based surveillance offer accuracy but struggle with transmission inefficiency. Conversely, UAV-based surveillance enables seamless communication but limited sensing capabilities. This article addresses the challenges of latency, energy efficiency, and cost in state-of-the-art leakage detection technologies for OGI pipelines. A three-tier architecture is proposed, integrating IoT, UAVs, and artificial intelligence-empowered edge computing to enhance pipeline surveillance. We aim to propose specialized routing that addresses IoT energy and fault tolerance issues, while UAVs act as relays to transmit data efficiently to control centers, considering factors like UAV energy and data complexity. Intelligent edge services optimize data transmission, prolong UAV lifespan, and manage latency. Various use cases are explored, and open research challenges with potential solutions are presented
Trigeminal neuralgia treatment outcomes following Gamma Knife radiosurgery with a minimum 3-year follow-up
OBJECTIVE: Effective short-term outcomes have been well documented for trigeminal neuralgia (TN) patients treated with Gamma Knife radiosurgery (GKRS) with reported success rates of 70–90 % with median follow-up intervals of 19–75 months. Fewer series, however, have described uniform long-term follow-up data. In this study, we report our long-term institutional outcomes in patients treated with GKRS after a minimum follow-up of 36 months. METHODS: Thirty-six consecutive patients with medically intractable TN received a median radiation dose of 45 Gy applied with a single 4-mm isocenter to the affected trigeminal nerve. Follow-up data were obtained by clinical examination and telephone questionnaire. Outcome results were categorized based on the Barrow Neurological Institute (BNI) pain scale with BNI I–III considered to be good outcomes and BNI IV–V considered as treatment failure. BNI facial numbness score was used to assess treatment complications. RESULTS: The incidence of early pain relief was high (80.5 %) and relief was noted in an average of 1.6 months after treatment. At minimum follow-up of 3 years, 67 % were pain free (BNI I) and 75 % had good treatment outcome. At a mean last follow-up of 69 months, 32 % were free from any pain and 63 % were free from severe pain. Bothersome posttreatment facial numbness was reported in 11 % of the patients. A statistically significant correlation was found between age and recurrence of any pain with age >70 predicting a more favorable outcome after radiosurgery. CONCLUSION: The success rate of GKRS for treatment of medically intractable TN declines over time with 32 % reporting ideal outcome and 63 % reporting good outcome. Patients older than age 70 are good candidates for radiosurgery. This data should help in setting realistic expectations for weighing the various available treatment options
Quantifying the CDK inhibitor VMY-1-103\u27s activity and tissue levels in an in vivo tumor model by LC-MS/MS and by MRI.
The development of new small molecule-based therapeutic drugs requires accurate quantification of drug bioavailability, biological activity and treatment efficacy. Rapidly measuring these endpoints is often hampered by the lack of efficient assay platforms with high sensitivity and specificity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and affected key metabolites in a mouse model of hedgehog-driven medulloblastoma
A novel preclinical model of craniospinal irradiation in pediatric diffuse midline glioma demonstrates decreased metastatic disease
BackgroundDiffuse midline glioma (DMG) is an aggressive pediatric central nervous system tumor with strong metastatic potential. As localized treatment of the primary tumor improves, metastatic disease is becoming a more important factor in treatment. We hypothesized that we could model craniospinal irradiation (CSI) through a DMG patient-derived xenograft (PDX) model and that CSI would limit metastatic tumor.MethodsWe used a BT245 murine orthotopic DMG PDX model for this work. We developed a protocol and specialized platform to deliver craniospinal irradiation (CSI) (4 Gy x2 days) with a pontine boost (4 Gy x2 days) and compared metastatic disease by pathology, bioluminescence, and MRI to mice treated with focal radiation only (4 Gy x4 days) or no radiation.ResultsMice receiving CSI plus boost showed minimal spinal and brain leptomeningeal metastatic disease by bioluminescence, MRI, and pathology compared to mice receiving radiation to the pons only or no radiation.ConclusionIn a DMG PDX model, CSI+boost minimizes tumor dissemination compared to focal radiation. By expanding effective DMG treatment to the entire neuraxis, CSI has potential as a key component to combination, multimodality treatment for DMG designed to achieve long-term survival once novel therapies definitively demonstrate improved local control
Updates on radiotherapy-immunotherapy combinations: Proceedings of 6(th) annual ImmunoRad conference
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference
Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis.
BACKGROUND: Numerous trials combining radiation therapy (RT) and immunotherapy in head and neck squamous cell carcinoma (HNSCC) are failing. Using preclinical immune cold models of HNSCC resistant to RT-immune checkpoint inhibitors, we investigate therapeutic approaches of overcoming such resistance by examining the differential microenvironmental response to RT.
METHODS: We subjected two HPV-negative orthotopic mouse models of HNSCC to combination RT, regulatory T cells (Treg) depletion, and/or CD137 agonism. Tumor growth was measured and intratumorous and lymph node immune populations were compared among treatment groups. Human gene sets, genetically engineered mouse models DEREG and BATF3-/-, flow and time-of-flight cytometry, RNA-Seq, Treg adoptive transfer studies, and in vitro experiments were used to further evaluate the role of dendritic cells (DCs) and Tregs in these treatments.
RESULTS: In MOC2 orthotopic tumors, we find no therapeutic benefit to targeting classically defined immunosuppressive myeloids, which increase with RT. In these radioresistant tumors, supplementing combination RT and Treg depletion with anti-CD137 agonism stimulates CD103+ DC activation in tumor-draining lymph nodes as characterized by increases in CD80+ and CCR7+ DCs, resulting in a CD8 T cell-dependent response. Simultaneously, Tregs are reprogrammed to an effector phenotype demonstrated by increases in interferonγ+, tumor necrosis factorα+, PI3K+, pAKT+ and Eomes+ populations as well as decreases in CTLA4+ and NRP-1+ populations. Tumor eradication is observed when RT is increased to an 8 Gy x 5 hypofractionated regimen and combined with anti-CD25+ anti-CD137 treatment. In a human gene set from oral squamous cell carcinoma tumors, high Treg number is associated with earlier recurrence.
CONCLUSIONS: Regulating Treg functionality and DC activation status within the lymph node is critical for generating a T cell effector response in these highly radioresistant tumors. These findings underscore the plasticity of Tregs and represent a new therapeutic opportunity for reprogramming the tumor microenvironment in HNSCCs resistant to conventional radioimmunotherapy approaches
- …