37 research outputs found

    Some evidence for large gravitational redshift in Seyfert galaxy NGC 4151

    Get PDF
    The photon spectra of two Seyfert galaxies NGC 4151 and MCG 8-11-11 are good experimentally established in the X-ray and gamma range. The annihilation of the high temperature positrons with cold electrons is proposed as the possible mechanism of photon production in the Seyfert galaxy NGC 4151. The photon spectrum of NGC 4151 with its observed features from the soft X to the gamma ray range is described by annihilation of positrons and electrons at temperatures 3 x 10 to the 12th power K and 10 to the 8th power K respectively. The photon spectra from annihilation of unthermalized plasma with above parameters should be shifted to the lower energy by redshift z = 100. In that case the source of photons should be placed closely to the black hole horizon (r approximately equal to 1.0001 r sub g

    Unthermalized positrons in gamma ray burst sources

    Get PDF
    The spectra of the broadening 0.511 MeV annihilation line produced by high temperatures was calculated in the case of unthermalized plasma; i.e., T sub e(+) is not = T sub e(-). The flattening in the spectrum of the annihilation lines for large differences of electron and positron temperatures is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of unthermalized positrons. It is proposed that the charge separation occurring in Eddington limited accretion onto a neutron star or the one photon pair production in strong magnetic fields as a mechanism for the production of unthermalized positrons in the sources of gamma bursts. From the best fit of experimental spectra by the model, the parameters of sources for which the regions with different plasma temperatures can exist is evaluated

    Virgo cluster as a high energy cosmic rays source

    Get PDF
    The extragalactic charged particles are reflecting from the Galaxy by its magnetic field. Assuming magnetic field in the Galaxy as quasilongitudinal, the mean transparency of Galaxy has been evaluated for extragalactic protons defined as a fraction of particles at a given energy from a given direction passing by the galactic plane. The anisotropy caused by the Galactic magnetic field reflection of protons can explain observed arrival directions of extensive air showers at large angle to the galactic plane. Our analysis shows that the increase with energy observed in sin b sup 11 is self-consistent with changing in the cosmic ray energy spectrum at high energy (E 10 to the 19th power eV) in the case when extragalactic cosmic ray source with spectral index -2.2 is at the position of the Virgo Cluster

    Unthermalized plasma in bursts sources

    Get PDF
    The pair e(+)-e(-) annihilation phenomena in hot plasma was studied in order to evaluate the photon energy spectrum. The spectra of the broadening 0.511 MeV annihilation line was calculated in the case of unthermalized plasma, i.e., T sub e(-) does not equal T sub e(+). The energy spectra from annihilation process for unthermalized positrons are characterized by the presence of flat part for energies greater than 0.511 MeV. The flattening in the spectrum of annihilation unthermalized plasma is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of hot positrons and cold electrons. It is proposed that the mechanism for the production of unthermalized positrons is associated with the charge separation in Eddington limited accretion onto a neutron star

    Some evidence for high energy gamma-ray sources at large galactic latitudes

    Get PDF
    The arrival directions of the gamma-quanta with energies of about 10 to 15th power eV which were registrated by Tien Shan experiment were compared with COS-B observations. On the basis of the Monte Carlo simulations it was shown with low probability that arrival directions of Tien Shan gamma-quanta initiated showers are not uniformly distributed. It is shown that in the region not seen by COS-B mission, the high energy gamma-ray sources should be located at position of 90 deg. 1 sup 11 130 deg and b sup 11 or = 50 deg. The integral intensity of these sources should be I ( 10 to the 15th power eV) = 4.8 + or - 1.7).10 to the 13th power/sq cm/s/str. There is no coincidence between the gamma-quanta registrated by Tien Shan experiment with Geminga intense COS-B gamma source. So it is shown that the integral photon spectrum of Geminga (I(e) approx E sup-Beta, where Beta = 0.8 for E 1 GeV) becomes steeper (Beta 1.2) in high energy region with probability 99.9.%

    Prospects for direct cosmic ray mass measurements through the Gerasimova-Zatsepin effect

    Get PDF
    The Solar radiation field may break apart ultra high energy cosmic nuclei, after which both remnants will be deflected in the interplanetary magnetic field in different ways. This process is known as the Gerasimova-Zatsepin effect after its discoverers. We investigate the possibility of using the detection of the separated air showers produced by a pair of remnant particles as a way to identify the species of the original cosmic ray primary directly. Event rates for current and proposed detectors are estimated, and requirements are defined for ideal detectors of this phenomenon. Detailed computational models of the disintegration and deflection processes for a wide range of cosmic ray primaries in the energy range of 10^16 to 10^20 eV are combined with sophisticated detector models to calculate realistic detection rates. The fraction of Gerasimova-Zatsepin events is found to be of the order of 10^-5 of the cosmic ray flux, implying an intrinsic event rate of around 0.07 km^-2 sr^-1 yr^-1 in the energy range defined. Event rates in any real experiment, however, existing or under construction, will probably not exceed 10^-2 yr^-1.Comment: 4 pages, 4 figure

    Present and Future Gamma-Ray Probes of the Cygnus OB2 Environment

    Full text link
    The MAGIC Collaboration has provided new observational data pertaining to the TeV J2032+4130 gamma-ray source (within the Cygnus OB2 region), for energies E_gamma >400 GeV. It is then appropriate to update the impact of these data on gamma-ray production mechanisms in stellar associations. We consider two mechanisms of gamma-ray emission, pion production and decay (PION) and photo-excitation of high-energy nuclei followed by prompt photo-emission from the daughter nuclei (A*). We find that while the data can be accommodated with either scenario, the A* features a spectral bump, corresponding to the threshold for exciting the Giant Dipole Resonance, which can serve to discriminate between them. We comment on neutrino emission and detection from the region if the PION and/or A* processes are operative. We also touch on the implications for this analysis of future Fermi and Cerenkov Telescope Array data.Comment: 6 pp, 2 figs. Matching version publihed in Phys. Rev.

    Working Group Report on the "TeV Particle Astrophysics and Physics Beyond the Standard Model"

    Full text link
    This working group focused mainly on the complementarity among particle physics and astrophysics. The analysis of data from both fields will better constrain theoretical models. Much of the discussion focused on detecting dark matter and susy particles, and on the potential of neutrino and gamma-ray astrophysics for seeking or constraining new physics.Comment: Report on Working Group in the TeV Particle Astrophysics Workshop II - Madison - Aug 200

    A study on the sharp knee and fine structures of cosmic ray spectra

    Full text link
    The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such kind of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called "component B" of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.Comment: 13 pages, 4 figures, accepted for publication in SCIENCE CHINA Physics, Mechanics & Astronomy

    Images of very high energy cosmic ray sources in the Galaxy: I. A source towards the Galactic Centre

    Full text link
    Recent analyses of the anisotropy of cosmic rays at 101810^{18} eV (the AGASA and SUGAR data) show significant excesses from regions close to the Galactic Centre and Cygnus. Our aim is to check whether such anisotropies can be caused by single sources of charged particles. We investigate propagation of protons in two models of the Galactic regular magnetic field (with the irregular component included) assuming that the particles are injected by a short lived discrete source lying in the direction of the Galactic Centre. We show that apart from a prompt image of the source, the regular magnetic field may cause delayed images at quite large angular distances from the actual source direction. The image is strongly dependent on the time elapsed after ejection of particles and it is also very sensitive to their energy. For the most favourable conditions for particle acceleration by a young pulsar the predicted fluxes are two to four order of magnitudes higher than that observed. The particular numbers depend strongly on the Galactic magnetic field model adopted but it looks that a single pulsar in the Galactic Centre could be responsible for the observed excess.Comment: 20 pages, 7 figures, accepted to J. Phys.
    corecore