19 research outputs found

    The Cosmology Large Angular Scale Surveyor

    Full text link
    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, rr, down to a level of 0.01 (95\% C.L.)

    CLASS Angular Power Spectra and Map-Component Analysis for 40 GHz Observations through 2022

    Full text link
    Measurement of the largest angular scale (<30\ell < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization, τ\tau, and search for the signature of inflation through the detection of primordial BB-modes. We present an analysis of maps covering nearly 75% of the sky made from the ground-based 40GHz40\,\mathrm{GHz} channel of the Cosmology Large Angular Scale Surveyor (CLASS) from August 2016 to May 2022. Using fast front-end polarization modulation from the Atacama Desert in Chile, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10<<10010 < \ell < 100. After a final calibration adjustment, noise simulations show the CLASS linear (circular) polarization maps have a white noise level of 125(130)μKarcmin125 \,(130)\,\mathrm{\mu K\, arcmin}. We measure the Galaxy-masked EEEE and BBBB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new regions of the sky and measure the faint diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5<<1255 < \ell < 125 with the first bin showing D<0.023D_\ell < 0.023 μKCMB2\mathrm{\mu K^2_{CMB}} at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher frequency CLASS channels are included in the analysis.Comment: 36 pages, 24 figures, 6 tables. Submitted to The Astrophysical Journa

    Venus Observations at 40 and 90 GHz with CLASS

    Full text link
    Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 ±\pm 2.8 K and 355.6 ±\pm 1.3 K in the Q and W frequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band. Our measurements are consistent with a CO2_2-dominant atmospheric model that includes trace amounts of additional absorbers like SO2_2 and H2_2SO4_4.Comment: 7 pages, 3 figures, published in PS

    The Cosmology Large Angular Scale Surveyor Receiver Design

    Full text link
    The Cosmology Large Angular Scale Surveyor consists of four instruments performing a CMB polarization survey. Currently, the 40 GHz and first 90 GHz instruments are deployed and observing, with the second 90 GHz and a multichroic 150/220 GHz instrument to follow. The receiver is a central component of each instrument's design and functionality. This paper describes the CLASS receiver design, using the first 90 GHz receiver as a primary reference. Cryogenic cooling and filters maintain a cold, low-noise environment for the detectors. We have achieved receiver detector temperatures below 50 mK in the 40 GHz instrument for 85% of the initial 1.5 years of operation, and observed in-band efficiency that is consistent with pre-deployment estimates. At 90 GHz, less than 26% of in-band power is lost to the filters and lenses in the receiver, allowing for high optical efficiency. We discuss the mounting scheme for the filters and lenses, the alignment of the cold optics and detectors, stray light control, and magnetic shielding.Comment: Fixed formatting of abstract; 20 Pages, 11 Figures, SPIE Conference Proceeding

    Two Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long Timescale Stability Achieved with a Front-End Variable-delay Polarization Modulator at 40 GHz

    Full text link
    The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (22002 \lesssim \ell \lesssim 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator (VPM) as the first optical element in each of the CLASS telescopes. Here we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first two years of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the 1/f1/f noise and temperature-to-polarization (TPT\rightarrow P) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a TPT\rightarrow P leakage of <3.8×104<3.8\times10^{-4} (95\% confidence) across the focal plane. We examine the sources of 1/f1/f noise present in the data and find the component of 1/f1/f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203±12μKRJs203 \pm 12 \mathrm{\mu K_{RJ}\sqrt{s}} for 1 mm of PWV when evaluated at 10 mHz; accounting for 32%\sim32\% of the 1/f1/f noise in the central pixels of the focal plane. The low level of TPT\rightarrow P leakage and 1/f1/f noise achieved through the use of a front-end polarization modulator enables the observation of the largest scales of the CMB polarization from the ground by the CLASS telescopes.Comment: Submitted to Ap

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore