55 research outputs found

    Quantitative Metabolomics by 1H-NMR and LC-MS/MS Confirms Altered Metabolic Pathways in Diabetes

    Get PDF
    Insulin is as a major postprandial hormone with profound effects on carbohydrate, fat, and protein metabolism. In the absence of exogenous insulin, patients with type 1 diabetes exhibit a variety of metabolic abnormalities including hyperglycemia, glycosurea, accelerated ketogenesis, and muscle wasting due to increased proteolysis. We analyzed plasma from type 1 diabetic (T1D) humans during insulin treatment (I+) and acute insulin deprivation (I-) and non-diabetic participants (ND) by 1H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. The aim was to determine if this combination of analytical methods could provide information on metabolic pathways known to be altered by insulin deficiency. Multivariate statistics differentiated proton spectra from I- and I+ based on several derived plasma metabolites that were elevated during insulin deprivation (lactate, acetate, allantoin, ketones). Mass spectrometry revealed significant perturbations in levels of plasma amino acids and amino acid metabolites during insulin deprivation. Further analysis of metabolite levels measured by the two analytical techniques indicates several known metabolic pathways that are perturbed in T1D (I-) (protein synthesis and breakdown, gluconeogenesis, ketogenesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress). This work demonstrates the promise of combining multiple analytical methods with advanced statistical methods in quantitative metabolomics research, which we have applied to the clinical situation of acute insulin deprivation in T1D to reflect the numerous metabolic pathways known to be affected by insulin deficiency

    Poor glycaemic control is associated with reduced exercise performance and oxygen economy during cardio-pulmonary exercise testing in people with type 1 diabetes

    Get PDF
    BackgroundTo explore the impact of glycaemic control (HbA1c) on functional capacity during cardio-pulmonary exercise testing in people with type 1 diabetes.MethodsSixty-four individuals with type 1 diabetes (age: 34 ± 8 years; 13 females, HbA1c: 7.8 ± 1% (62 ± 13 mmol/mol), duration of diabetes: 17 ± 9 years) performed a cardio-pulmonary cycle ergometer exercise test until volitional exhaustion. Stepwise linear regression was used to explore relationships between HbA1c and cardio-respiratory data with p ≤ 0.05. Furthermore, participants were divided into quartiles based on HbA1c levels and cardio-respiratory data were analysed by one-way ANOVA. Multiple regression analysis was performed to explore the relationships between changes in time to exhaustion and cardio-respiratory data. Data were adjusted for confounder.ResultsHbA1c was related to time to exhaustion and oxygen consumption at the power output elicited at the sub-maximal threshold of the heart rate turn point (r = 0.47, R2 = 0.22, p = 0.03). Significant differences were found at time to exhaustion between QI vs. QIV and at oxygen consumption at the power output elicited at the heart rate turn point between QI vs. QII and QI vs. QIV (p < 0.05). Changes in oxygen uptake, power output and in oxygen consumption at the power output elicited at the heart rate turn point and at maximum power output explained 55% of the variance in time to exhaustion (r = 0.74, R2 = 0.55, p < 0.01).ConclusionsPoor glycaemic control is related to less economical use of oxygen at sub-maximal work rates and an earlier time to exhaustion during cardio-pulmonary exercise testing. However, exercise training could have the same potential to counteract the influence of poor glycaemic control on functional capacity

    Function-Based Discovery of Significant Transcriptional Temporal Patterns in Insulin Stimulated Muscle Cells

    Get PDF
    Background: Insulin action on protein synthesis (translation of transcripts) and post-translational modifications, especially of those involving the reversible modifications such as phosphorylation of various signaling proteins, are extensively studied but insulin effect on transcription of genes, especially of transcriptional temporal patterns remains to be fully defined. Methodology/Principal Findings: To identify significant transcriptional temporal patterns we utilized primary differentiated rat skeletal muscle myotubes which were treated with insulin and samples were collected every 20 min for 8 hours. Pooled samples at every hour were analyzed by gene array approach to measure transcript levels. The patterns of transcript levels were analyzed based on a novel method that integrates selection, clustering, and functional annotation to find the main temporal patterns associated to functional groups of differentially expressed genes. 326 genes were found to be differentially expressed in response to in vitro insulin administration in skeletal muscle myotubes. Approximately 20 % of the genes that were differentially expressed were identified as belonging to the insulin signaling pathway. Characteristic transcriptional temporal patterns include: (a) a slow and gradual decrease in gene expression, (b) a gradual increase in gene expression reaching a peak at about 5 hours and then reaching a plateau or an initial decrease and other different variable pattern of increase in gene expression over time. Conclusion/Significance: The new method allows identifying characteristic dynamic responses to insulin stimulus, commo

    Further Support to the Uncoupling-to-Survive Theory: The Genetic Variation of Human UCP Genes Is Associated with Longevity

    Get PDF
    In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly

    Release of skeletal muscle peptide fragments identifies individual proteins degraded during insulin deprivation in type 1 diabetic humans and mice

    No full text
    Insulin regulates skeletal muscle protein degradation, but the types of proteins being degraded in vivo remain to be determined due to methodological limitations. We present a method to assess the types of skeletal muscle proteins that are degraded by extracting their degradation products as low-molecular weight (LMW) peptides from muscle samples. High-resolution mass spectrometry was used to identify the original intact proteins that generated the LMW peptides, which we validated in rodents and then applied to humans. We deprived insulin from insulin-treated streptozotocin (STZ) diabetic mice for 6 and 96 h and for 8 h in type 1 diabetic humans (T1D) for comparison with insulin-treated conditions. Protein degradation was measured using activation of autophagy and proteasome pathways, stable isotope tracers, and LMW approaches. In mice, insulin deprivation activated proteasome pathways and autophagy in muscle homogenates and isolated mitochondria. Reproducibility analysis of LMW extracts revealed that ~80% of proteins were detected consistently. As expected, insulin deprivation increased whole body protein turnover in T1D. Individual protein degradation increased with insulin deprivation, including those involved in mitochondrial function, proteome homeostasis, nDNA support, and contractile/cytoskeleton. Individual mitochondrial proteins that generated more LMW fragment with insulin deprivation included ATP synthase subunit-γ (+0.5-fold, P = 0.007) and cytochrome c oxidase subunit 6 (+0.305-fold, P = 0.03). In conclusion, identifying LMW peptide fragments offers an approach to determine the degradation of individual proteins. Insulin deprivation increases degradation of select proteins and provides insight into the regulatory role of insulin in maintaining proteome homeostasis, especially of mitochondria
    corecore