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SHORT REPORT

Poor glycaemic control is associated 
with reduced exercise performance and oxygen 
economy during cardio‑pulmonary exercise 
testing in people with type 1 diabetes
Othmar Moser1,2*  , Max L. Eckstein1,2, Olivia McCarthy1,2, Rachel Deere1,2, Stephen C. Bain1, Hanne L. Haahr3, 
Eric Zijlstra4 and Richard M. Bracken1,2

Abstract 

Background:  To explore the impact of glycaemic control (HbA1c) on functional capacity during cardio-pulmonary 
exercise testing in people with type 1 diabetes.

Methods:  Sixty-four individuals with type 1 diabetes (age: 34 ± 8 years; 13 females, HbA1c: 7.8 ± 1% (62 ± 13 mmol/
mol), duration of diabetes: 17 ± 9 years) performed a cardio-pulmonary cycle ergometer exercise test until volitional 
exhaustion. Stepwise linear regression was used to explore relationships between HbA1c and cardio-respiratory data 
with p ≤ 0.05. Furthermore, participants were divided into quartiles based on HbA1c levels and cardio-respiratory data 
were analysed by one-way ANOVA. Multiple regression analysis was performed to explore the relationships between 
changes in time to exhaustion and cardio-respiratory data. Data were adjusted for confounder.

Results:  HbA1c was related to time to exhaustion and oxygen consumption at the power output elicited at the sub-
maximal threshold of the heart rate turn point (r = 0.47, R2 = 0.22, p = 0.03). Significant differences were found at 
time to exhaustion between QI vs. QIV and at oxygen consumption at the power output elicited at the heart rate turn 
point between QI vs. QII and QI vs. QIV (p < 0.05). Changes in oxygen uptake, power output and in oxygen consump-
tion at the power output elicited at the heart rate turn point and at maximum power output explained 55% of the 
variance in time to exhaustion (r = 0.74, R2 = 0.55, p < 0.01).

Conclusions:  Poor glycaemic control is related to less economical use of oxygen at sub-maximal work rates and an 
earlier time to exhaustion during cardio-pulmonary exercise testing. However, exercise training could have the same 
potential to counteract the influence of poor glycaemic control on functional capacity.

Trial registration NCT01704417. Date of registration: October 11, 2012
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Introduction
Type 1 diabetes (T1D) is associated with an increased 
risk of cardio-vascular disease (CVD) compared to peo-
ple without diabetes. Although regular physical activity 

is encouraged as a cornerstone of good diabetes man-
agement [1, 2], physical inactivity rates remain high [3]. 
Patients often cite low functional capacity and loss of 
metabolic control (short-term and/or long term glycae-
mic disturbances) as barriers to beginning or maintaining 
regular physical activity [4].

Functional capacity, defined as the ability to perform 
aerobic work during maximal exercise testing can be 
assessed by means of cardio-pulmonary exercise (CPX) 
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testing. This non-invasive, sensitive test provides an 
assessment of integrative responses of cardiovascular, 
pulmonary and musculoskeletal systems across a sub-
maximal to maximal continuum and can be utilised 
to identify fatigue of cardiovascular or respiratory ori-
gin [5]. Most reported studies in people with T1D have 
assessed maximum cardio-pulmonary values such as the 
peak oxygen uptake (VO2peak) [6–8]. VO2peak is the high-
est rate of oxygen that can be consumed during exercise 
involving the majority of muscle mass at sea-level and is 
defined by the Fick equation as the product of cardiac 
output and arteriovenous oxygen difference [5]. Achiev-
ing a true VO2peak requires strong motivation and physi-
cal fitness, but for people with T1D with ‘low exercise 
tolerance’ the perception of exercise-induced pain may 
encourage premature test termination. In addition, the 
presence of diabetes complications such as neuropathy, 
nephropathy and underlying CVD may exacerbate pain 
or damage during exercise and reduce the validity of CPX 
testing in detailing accurate maximum cardio-respira-
tory parameters e.g. VO2 plateau, maximum heart rate 
(HRmax).

Most activities in daily life are performed at low-to 
moderate intensity and do not require maximum cardio-
respiratory effort. It may be more relevant in people with 
T1D to explore cardio-respiratory data obtained dur-
ing sub-maximal stages of CPX testing. The rate of oxy-
gen use at sub-maximal exercise intensities provides an 
indication of the economy of use of oxygen for an indi-
vidual to the work rate and has been shown to predict 
endurance performance in healthy individuals [9]. Fur-
thermore, identification of the sub-maximal work rate 
at which there is an increase in use of non-oxidative fuel 
sources (i.e. cellular glycolysis) results in a greater pro-
duction of carbon dioxide (CO2), pyruvate and lactic acid 
fermentation. Identification of such ‘thresholds’ involv-
ing ventilation, heart rate and/or blood lactate have been 
studied as sub-maximal predictors of endurance capac-
ity in healthy cohorts and in people with chronic disease 
[5]. As an example the heart rate turn point (HRTP), 
which is based on findings from Conconi et al., was sig-
nificantly associated with the second lactate threshold 
[10–13]. This heart rate derived threshold is defined as 
the intersection of two regression lines of the heart rate 
to performance curve between early stages of CPX test-
ing [peri-first lactate turn point (LTP1)] and maximum 
power output (Pmax), determined from a second-degree 
polynomial representation satisfying the condition of 
least error squares [14]. However, there is a lack of infor-
mation about their use in people with T1D in predicting 
functional capacity.

Lower maximum cardio-respiratory variables have 
been reported in participants with T1D compared to 

healthy individuals in some studies but not in others [8, 
15]. A review by Baldi et al. [16] shed some light on the 
influence of glycaemic control within people with T1D 
and when compared to healthy individuals. Patients with 
poor glycaemic control demonstrated a lower peak func-
tional capacity than those patients with good glycaemic 
control. No information currently exists on the influence 
of glycaemic control on sub-maximal cardio-respiratory 
parameters obtained from a CPX test. Such information 
might reveal additional insights on the impact of glycae-
mia on the functioning of the cardio-vascular and res-
piratory system and provide further support for the use 
of moderate intensity exercise tests that reduce stress on 
the patient.

The aim of this study was to examine the relationship of 
glycaemic control to sub-maximal and maximum cardio-
pulmonary markers obtained during CPX testing in peo-
ple with T1D.

Materials and methods
Participant characteristics
Adults (aged 18–45  years, both inclusive) with T1D 
eligible for the study had a body mass index (BMI) of 
18–27 kg/m2, glycated haemoglobin (HbA1c) level ≤ 9.5% 
(80  mmol/mol) and were performing regular physi-
cal cardiorespiratory exercise during the last 3  months 
before screening. Exclusion criteria included cancer, 
cardiac diseases, supine blood pressure outside the 
range 90–140  mmHg for systolic blood pressure or 
50–90  mmHg for diastolic blood pressure, recurrent 
severe hyperglycaemia or hypoglycaemia unawareness 
and smoking [17]. Sixty-four people with T1D were 
included for analyses (Table 1). Data were extracted from 
a clinical trial (NCT01704417) [17].

Study procedures
After the assessment of eligibility, patients were asked 
to fill in the International Physical Activity Question-
naire (IPAQ) to assess physical activity (MET min/week). 
Patients characteristics, medical history and medications 
were documented in a case report form (CRF). After-
wards, HbA1c was measured via a venous blood sample 
collected from the antecubital vein (Automated Glycohe-
moglobin Analyzer HLC-723G8, Tosoh Europe N.V, Bel-
gium). Immediately before and after CPX testing, venous 
blood was collected to analyse blood glucose concentra-
tion to ensure euglycaemia during CPX testing (Super 
GL Glucose Analyzer, Dr. Müller Gerätebau GmbH, 
Germany). If pre-exercise venous blood glucose concen-
tration was below 4.4  mmol/l carbohydrates were given 
(15–30 g) and if blood glucose concentration was above 
13.9 mmol/l a small bolus correction dose was adminis-
tered. No hypo- (< 3.9 mmol/l) or severe hyperglycaemia 
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(> 19.4 mmol/l) occurred before or during CPX testing. 
The timing of bolus insulin injection was not exactly 
pre-defined, but participants were told to avoid the peak 
action of bolus insulin during CPX testing (this means 
avoiding bolus insulin injections less than 120 min prior 
to the start of CPX testing). Participants performed a 
CPX test until volitional exhaustion on a cycle ergom-
eter (Ergospirometer PowerCube®-Ergo, Ganshorn 
Medizin Electronic, GER). Participants sat quietly on the 
cycle ergometer for 3 min (0 W) before they started the 
warm-up period of 3 min cycling at a workload of 30 W 
for females and 40 W for males. Then, the workload was 
increased by 30 W for females and 40 W for males every 
3  min until maximum volitional exhaustion. Finally, a 
cool-down period was performed for 1 min.

Measurements
Pulmonary gas exchange variables were collected con-
tinuously by breath-by-breath measurement and then 
averaged over 10  s. VO2peak was defined as the 1  min 
average in oxygen (O2) consumption during the high-
est work rate. Heart rate and blood pressure were 

measured continuously via a 12-lead electrocardiogram 
and an automatic sphygmomanometer (Ergospirometer 
PowerCube®-Ergo, Ganshorn Medizin Electronic, GER).

The non-invasive anaerobic threshold was defined by 
the HRTP [18]. HRTP was demarcated as the intersection 
of two regression lines of the heart rate to performance 
curve between post-warm-up and maximum power out-
put (Pmax), determined from the second-degree polyno-
mial representation satisfying the condition of least error 
squares [14]. Additionally, the second ventilatory thresh-
old (VT2) was determined by means of the ventilation/
carbon dioxide (VE/VCO2) slope [19] to control for the 
accuracy of HRTP.

Statistical analysis
Data (10  s average) were expressed as absolute values 
and relative to maximum physiological variables and 
Pmax. Data were tested for distribution via Shapiro-Wilks 
normality test and non-normal distributed data were 
log transformed. Stepwise linear regression was used to 
explore relationships between glycaemic control (HbA1c) 
and CPX obtained cardio-respiratory data and perfor-
mance markers with p  ≤  0.05. Data were adjusted for 
sex, age, BMI, blood glucose concentration at the start 
of CPX testing and duration of diabetes. Post hoc power 
analysis for the primary outcome [stepwise linear regres-
sion: dependent variable HbA1c levels, independent vari-
ables time to exhaustion (Timemax) and oxygen economy 
at HRTP] resulted in a power (1-beta error probability) 
of 0.96.

Participants were divided into quartiles (Q) based on 
HbA1c levels, and respective sub-maximal and maximal 
CPX derived cardio-respiratory data and performance 
markers were analysed by one-way analysis of variance 
(ANOVA) followed by a fishers least significant differ-
ence multiple comparison post hoc test (LSD). Multiple 
regression analysis was performed to explore relation-
ships between changes in Timemax and independent vari-
ables, VO2peak and oxygen uptake at the heart rate turn 
point (VO2HRTP), body mass adjusted values of Pmax and 
power output at the heart rate turn point (PHRTP) as well 
as oxygen economy at Pmax [VO2peak/Pmax (ml/min/W)] 
and at HRTP [VO2HRTP/PHRTP (ml/min/W)]. All statis-
tics were performed with a standard software package of 
SPSS software version 22 (IBM Corporation, USA) and 
Prism Software version 7.0 (GraphPad, USA).

Results
Exercise performance data
Maximum physiological parameters were found at HRmax 
of 185 ± 11 b/min, VO2peak 37 ± 5 ml/kg/min, respiratory 
exchange ratio (RER) 1.22 ± 0.09 and Pmax 231 ± 47 W. 
No significant differences were found between the HRTP 

Table 1  Participant characteristics given  as mean  ±  SD 
and percentage (%)

Characteristic Total (n = 64)

Age (years) 34 ± 8

Gender

 Female (n; %) 13 (20)

 Male (n; %) 51 (80)

Body mass index (kg/m2) 24 ± 2

Blood pressure (mmHg) 124 ± 17/79 ± 12

Resting heart rate (b/min) 81 ± 12

Duration of diabetes (years) 17 ± 9

HbA1c [% (mmol/mol)] 7.8 ± 1 (62 ± 13)

Total daily dose of insulin (U) 51 ± 15

Type of therapy

 Multiple daily injections (n; %) 47 (78)

 Insulin pump therapy (n; %) 17 (22)

Co-morbidities 14

 Arterial hypertension 6

 Hypothyroidism 5

 Hypercholesterolemia 2

 Hashimoto thyroiditis 1

Medication other than insulin

 ACE inhibitor 6

 Levothyroxine 6

 Statin 2

 Diuretic medication 1

 Calcium channel blocker 1

Physical activity assessed via IPAQ (MET min week) 3086 ± 2736
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and the VT2 as well as for the comparison of pre- and 
post-exercise blood glucose concentration as given in 
Table 2.

Glycaemic control and functional capacity
As shown in Fig. 1, sex-, age-, BMI-, blood glucose con-
centration at the start of CPX testing- and duration 
of diabetes-adjusted stepwise linear regression model 
revealed that HbA1c was related to Timemax and oxygen 
consumption at the power output elicited at the sub-
maximal threshold of the heart rate turn point (VO2HRTP/
PHRTP) (r = 0.47, R2 = 0.22, p = 0.03).

Grouped HbA1c levels and functional capacity
Grouping participants based on quartiles of glycae-
mic control resulted in HbA1c levels of 6.7  ±  0.5% 
(49  ±  6  mmol/mol) for quartile I, 7.6  ±  0.1% 
(60  ±  1  mmol/mol) for quartile II, 8.0  ±  0.1% 
(63  ±  1  mmol/mol) for quartile III and 9.1  ±  0.6% 
(76 ±  7  mmol/mol) for quartile IV (p  <  0.01). No sig-
nificant differences were found for physical activity 
(p =  0.68), resting HR (p =  0.42), systolic blood pres-
sure (p =  0.18) and diastolic blood pressure (p =  0.83) 
between groups.

Significant differences were found at Timemax between 
QI vs. QIV (mean difference 2.5 ± 1.0 min, p = 0.02) and 
at VO2HRTP/PHRTP between QI vs. QII (−  1.5 ±  0.6  ml/
min/W, p  =  0.02) and QI vs QIV (−  1.6  ±  0.71  ml/
min/W, p = 0.01) (Fig. 2).

White bar  =  QI (HbA1c 6.  ±  0.5%; 4  ±  6  mmol/
mol), bright-grey bar  =  QII (HbA1c 7.  ±  0.1%; 
60  ±  1  mmol/mol), dark-grey bar  =  QIII (HbA1c 
8. ± 0.1%; 6 ± 1 mmol/mol) and black bar = QIV (HbA1c 
9.1 ± 0.6%; 7 ± 7 mmol/mol). Values are given as mean 
and SD. “*” represents p ≤ 0.05.

Relationships of time to exhaustion and cardio‑pulmonary 
responses during CPX testing
Multiple regression analysis revealed that changes in 
VO2peak, VO2HRTP, Pmax, PHRTP, VO2HRTP/PHRTP as well 
as VO2peak/Pmax constitute independent predictors of 
Timemax (r =  0.74, p  <  0.01) and those variables could 
explain 55% of the alteration in Timemax.

Discussion
This study demonstrated an important relationship 
between glycaemic control and the cardio-respiratory 
responses to CPX testing in people with T1D. Exercise 

Table 2  Comparison of the anaerobic thresholds derived from HRTP and VT2 as well as pre- and post-exercise blood glu-
cose levels

Results are given as mean ± SD

HRTP VT2 p value

VO2 (l/min) 2.09 ± 0.50 2.17 ± 0.50 0.41

HR (b/min) 158 ± 14 157 ± 17 0.63

P (W) 169 ± 39 172 ± 38 0.45

VE (l/min) 55 ± 13 58 ± 14 0.26

Pre-exercise Post-exercise p value

BG (mmol/l) 9.3 ± 3.4 10 ± 3.2 0.06

Fig. 1  Relationships between HbA1c and a Timemax and b VO2HRTP/PHRTP, n = 64
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economy is defined as the rate of oxygen use at a given 
workload. We found that individuals with poorer glycae-
mic control (higher HbA1c values) displayed a higher rate 
of O2 use at a sub-maximal work rate (HRTP) and ear-
lier Timemax. This result is confirmed by the findings from 
Tagougui et al. in which the increase in deoxyhemoglobin 
(reflection of relative tissue deoxygenation) in the vastus 
lateralis was blunted in patients with T1D and with poor 
glycaemic control during CPX testing [20]. Interestingly, 
the maximum oxygen consumption was negatively corre-
lated with changes in deoxyhemoglobin.

Our findings are in contrast to recent studies evaluating 
the association between glycaemic control and functional 
capacity [6, 8]. Stubbe et al. could not find an association 
between HbA1c levels and the O2 uptake at the anaerobic 
lactate threshold [8]. This contrast in comparison to our 
results might explained by lower and more homogene-
ous HbA1c levels as observed in our cohort. The variation 
in glycaemic control and its upper and lower extremes 
clearly contributed to the association between HbA1c lev-
els and rates of O2 use at the HRTP. Turinese et al. also 
did not find significant relationships between the glycae-
mic control and CPX derived markers [6]. However, the 
lack of associations might be originated by the low num-
ber of participants (N = 17).

There may be several postulated reasons for our find-
ings. During exercise, skeletal muscle consumes most of 
the inhaled O2 and a greater O2 cost for a given exercise 
intensity might indicate fibre atrophy and/or morpho-
logical abnormalities in the mitochondria [21]. Reduced 
skeletal muscle mitochondrial ATP production rates 
have also been associated with poor glycaemic control 
[22]. Furthermore, the capillary density surrounding 
skeletal muscle has been shown to be lower in individu-
als with T1D [23]. A reduced oxidative capacity within 
prime mover muscles increases dependence on support-
ing muscles, and increases the overall oxygen cost of the 
activity for a given workload. Furthermore, an earlier 

limit on O2 use within a muscle shifts energy metabolism 
towards non-oxidative glycolysis and an earlier lowered 
pH [24]. Alternatively, oxygen supply systems may be 
compromised more in individuals with poorer glycaemic 
control. Red blood cell dynamics have been shown to be 
altered in T1D rats [25] with velocity and flux reduced 
in comparison to non-diabetics, albeit with a similar 
haematocrit.

People with T1D may display cardiomyopathy and this 
seems dependent on the HbA1c value which has been 
hypothesised to alter cardiac structure, e.g. increased left 
ventricular wall thickness and mass, and impaired dias-
tolic function. Interestingly, poor glycaemic control was 
associated with reduced stroke volume and cardiac out-
put in athletes with T1D compared with non-diabetic 
individuals, despite an equivalent amount of training 
[26]. This reduction in stroke volume might be caused by 
earlier diastolic dysfunction, which reduces the atrioven-
tricular pressure gradient and causes early diastolic left 
ventricular filling [16].

The decreased economy at early stages during CPX 
testing translated to shorter exercise test duration. 
Indeed, approximately 55% of the shorter total exer-
cise time could be accounted for lowered O2 uptake, 
decreased power output and less economical use of O2 
for both at the HRTP and maximum power. Taken this 
into account, it might be that regular exercise training, 
which increases these physiological parameters, might 
have similar potential to neutralise the negative influence 
of glycaemic control on functional capacity [27] and even 
on cardiovascular autonomic regulation [28].

This study is limited by the heterogeneity and the wide 
range in the duration of diabetes, age, blood glucose 
concentration at the start of CPX testing and sex dis-
tribution. However, we addressed this limitation as we 
have adjusted for these factors. Additionally, it might 
be that different levels of blood glucose influenced 

Fig. 2  HbA1c quartiles for a Timemax and b VO2HRTP/PHRTP
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catecholamine response which in turn altered cardiac 
function during CPX testing.

Conclusions
In conclusion, in this well-characterised study, individu-
als with T1D and poorer glycaemic control displayed less 
economical use of oxygen at sub-maximal work rates and 
an earlier time to exhaustion during CPX testing. Nev-
ertheless, exercise training could have the same potential 
to counteract the influence of poor glycaemic control on 
functional capacity.

Abbreviations
T1D: type 1 diabetes; CVD: cardio-vascular disease; CPX: cardio-pulmonary 
exercise; VO2peak: peak oxygen uptake; HRmax: maximum heart rate; CO2: 
carbon dioxide; HRTP: heart rate turn point; LTP1: first lactate turn point; Pmax: 
maximum power output; IPAQ: International Physical Activity Questionnaire; 
VT2: second ventilatory; VE/VCO2 slope: ventilation/carbon dioxide slope; 
BMI: body mass index; HbA1c: glycated haemoglobin; O2: oxygen; Q: quartiles; 
ANOVA: analysis of variance; LSD: fishers least significant difference multiple 
comparison post hoc test; Timemax: time to exhaustion; VO2HRTP: oxygen 
uptake at the heart rate turn point; PHRTP: power output at the heart rate turn 
point; RER: respiratory exchange ratio; HRHRTP: heart rate at the heart rate turn 
point.

Authors’ contributions
OM, RMB, EZ, SCB and HLH designed the study. EZ supervised exercise testing. 
OM, RMB, MLE, OMc and RD analysed and interpreted the data. OM, RMB and 
SCB wrote the first draft of the paper. EZ, MLE, OMc, RD and HLH edited the 
paper. All authors contributed to the writing of the paper. All authors read and 
approved the final manuscript.

Author details
1 Diabetes Research Group, Medical School, Swansea University, SA2 
8PP Swansea, UK. 2 Applied Sport, Technology, Exercise and Medicine 
Research Centre (A‑STEM), College of Engineering, Swansea University, 
Fabian Way, Crymlyn Burrows, Skewen, SA1 8EN Swansea, UK. 3 Novo Nordisk 
A/S, Vandtårnsvej 108, 2860 Søborg, Denmark. 4 Profil, Hellenbergsstraße 9, 
41460 Neuss, Germany. 

Acknowledgements
Data were extracted from a clinical trial (NCT01704417).

Competing interests
OM has received lecture fees from Medtronic and received a grant from Sêr 
Cymru II COFUND fellowship/European Union. MLE has received a KESS2/
European Social Fund scholarship. SCB reports having received honoraria, 
teaching and research grants from the Abbott, Astra Zeneca, Boehringer Ingel-
heim, BMS, Diartis, Eli Lily and Company, GlaxoSmithKline, Johnson & Johnson, 
Merck Sharp& Dohme, Novartis, Novo Nordisk, Pfizer, Roche, Sanofi-Aventis, 
Schering-Plough, Servier and Takeda. RMB reports having received honoraria, 
travel and educational grant support from, Boehringer-Ingelheim, Eli Lily and 
Company, Novo Nordisk, Sanofi-Aventis. EZ, RD and OMc have no disclosures 
to report. HLH is employee and shareholder in Novo Nordisk A/S.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Consent for publication
Informed consent for publication was obtained before any trial related 
activities.

Ethics approval and consent to participate
All procedures performed were in accordance with Good Clinical Practice 
(GCP) the ethical standards of the national research committee and with 

the 1964 Helsinki Declaration and its later amendments. The study protocol 
was approved by an independent ethics committee (Ethikkommission der 
Ärztekammer Nordrhein; Reference Number: 2012269). Written informed 
consent was obtained before any trial related activities.

Funding
The study was sponsored by Novo Nordisk A/S. Novo Nordisk A/S contributed 
only as a sponsor for this trial.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 3 October 2017   Accepted: 15 November 2017

References
	1.	 Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 dia-

betes: a consensus statement. Lancet Diabetes Endocrinol. 2017;8587:1–
14. https://doi.org/10.1016/S2213-8587(17)30014-1.

	2.	 Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exer-
cise regularly? Acta Diabetol. 2017;54:615–30. https://doi.org/10.1007/
s00592-017-0978-x.

	3.	 Plotnikoff RC, Taylor LM, Wilson PM, et al. Factors associated with physi-
cal activity in Canadian adults with diabetes. Med Sci Sports Exerc. 
2006;38:1526–34. https://doi.org/10.1249/01.mss.0000228937.86539.95.

	4.	 Brazeau AS, Rabasa-Lhoret R, Strychar IMH. Barriers to physical activity 
among patients With type 1 diabetes. Diabetes Care. 2008;31:2108–9. 
https://doi.org/10.2337/dc08-0720.

	5.	 Balady GJ, Arena R, Sietsema K, et al. Clinician’s guide to cardiopulmonary 
exercise testing in adults: a scientific statement from the American heart 
association. Circulation. 2010;122:191–225. https://doi.org/10.1161/
CIR.0b013e3181e52e69.

	6.	 Turinese I, Marinelli P, Bonini M, et al. Metabolic and cardiovascular 
response to exercise in patients with type 1 diabetes. J Endocrinol Invest. 
2017. https://doi.org/10.1007/s40618-017-0670-6.

	7.	 Gusso S, Pinto TE, Baldi JC, et al. Diastolic function is reduced in ado-
lescents with type 1 diabetes in response to exercise. Diabetes Care. 
2012;35:2089–94. https://doi.org/10.2337/dc11-2331.

	8.	 Stubbe B, Schipf S, Schäper C, et al. The influence of type 1 diabetes 
mellitus on pulmonary function and exercise capacity—results from 
the study of health in pomerania (SHIP). Exp Clin Endocrinol Diabetes. 
2017;125:64–9. https://doi.org/10.1055/s-0042-112219.

	9.	 Yoshida T, Udo M, Iwai K, Yamaguchi T. Physiological characteristics 
related to endurance running performance in female distance runners. J 
Sports Sci. 1993;11:57–62. https://doi.org/10.1080/02640419308729964.

	10.	 Conconi F, Ferrari M, Ziglio PG, et al. Determination of the anaero-
bic threshold by a noninvasive field test in runners. J Appl Physiol. 
1982;52:869–73.

	11.	 Ribeiro JP, Fielding RA, Hughes V, et al. Heart rate break point may coin-
cide with the anaerobic and not the aerobic threshold. Int J Sports Med. 
1985;6:220–4. https://doi.org/10.1055/s-2008-1025844.

	12.	 Hofmann P, Bunc V, Leitner H, et al. Heart rate threshold related to lactate 
turn point and steady-state exercise on a cycle ergometer. Eur J Appl 
Physiol Occup Physiol. 1994;69:132–9.

	13.	 Bunc V, Hofmann P, Leitner H, Gaisl G. Verification of the heart rate thresh-
old. Eur J Appl Physiol Occup Physiol. 1995;70:263–9.

	14.	 Hofmann P, Pokan R, Duvillard S, et al. Heart rate performance curve dur-
ing incremental cycle ergometer exercise in healthy young male subjects. 
Med Sci Sport Exerc. 1997;195:762–8.

	15.	 Veves A, Saouaf R, Donaghue VM, et al. Aerobic exercise capacity remains 
normal despite impaired endothelial function in the micro- and macrocir-
culation of physically active IDDM patients. Diabetes. 1997;46:1846–52.

	16.	 Baldi JC, Hofman PL. Does careful glycemic control improve aero-
bic capacity in subjects with type 1 diabetes? Exerc Sport Sci Rev. 
2010;38:161–7. https://doi.org/10.1097/JES.0b013e3181f4501e.



Page 7 of 7Moser et al. Diabetol Metab Syndr  (2017) 9:93 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	17.	 Heise T, Bain SC, Bracken RM, et al. Similar risk of exercise-related hypo-
glycaemia for insulin degludec to that for insulin glargine in patients with 
type 1 diabetes: a randomized cross-over trial. Diabetes Obes Metab. 
2016;18:196–9. https://doi.org/10.1111/dom.12588.

	18.	 Beckers PJ, Possemiers NM, Van Craenenbroeck EM, et al. Comparison of 
three methods to identify the anaerobic threshold during maximal exer-
cise testing in patients with chronic heart failure. Am J Phys Med Rehabil. 
2012;91:148–55. https://doi.org/10.1097/PHM.0b013e3182411d69.

	19.	 Wasserman K, Whipp BJ, Davis JA. Respiratory physiology of exercise: 
metabolism, gas exchange, and ventilatory control. Int Rev Physiol. 
1981;23:149–211.

	20.	 Tagougui S, Leclair E, Fontaine P, et al. Muscle oxygen supply impairment 
during exercise in poorly controlled type 1 diabetes. Med Sci Sports 
Exerc. 2015;47:231–9. https://doi.org/10.1249/MSS.0000000000000424.

	21.	 Reske-Nielsen E, Harmsen A, Vorre P. Ultrastructure of muscle biopsies in 
recent, short-term and long-term juvenile diabetes. Acta Neurol Scand. 
1977;55:345–62.

	22.	 Karakelides H, Asmann YW, Bigelow ML, et al. Effect of insulin deprivation 
on muscle mitochondrial ATP production and gene transcript levels in 
type 1 diabetic subjects. Diabetes. 2007;56:2683–9.

	23.	 Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabe-
tes mellitus on skeletal muscle: clinical observations and 

physiological mechanisms. Pediatr Diabetes. 2011;12:345–64. https://doi.
org/10.1111/j.1399-5448.2010.00699.x.

	24.	 Crowther GJ, Milstein JM, Jubrias SA, et al. Altered energetic properties in 
skeletal muscle of men with well-controlled insulin-dependent (type 1) 
diabetes. Am J Physiol Endocrinol Metab. 2003;284:E655–62. https://doi.
org/10.1152/ajpendo.00343.2002.

	25.	 Kindig CA, Sexton WL, Fedde MR, Poole DC. Skeletal muscle micro-
circulatory structure and hemodynamics in diabetes. Respir Physiol. 
1998;111:163–75. https://doi.org/10.1016/S0034-5687(97)00122-9.

	26.	 Baldi JC, Cassuto NA, Foxx-Lupo WT, et al. Glycemic status affects 
cardiopulmonary exercise response in athletes with type I diabe-
tes. Med Sci Sports Exerc. 2010;42:1454–9. https://doi.org/10.1249/
MSS.0b013e3181d1fdb3.

	27.	 Gusso S, Pinto T, Baldi JC, et al. Exercise training improves but does not 
normalize left ventricular systolic and diastolic function in adolescents 
with type 1 diabetes. Diabetes Care. 2017. https://doi.org/10.2337/
dc16-2347.

	28.	 Lucini D, Zuccotti GV, Scaramuzza A, et al. Exercise might improve cardio-
vascular autonomic regulation in adolescents with type 1 diabetes. Acta 
Diabetol. 2013;50:341–9. https://doi.org/10.1007/s00592-012-0416-z.


