101 research outputs found

    TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo

    Get PDF
    Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family and is involved in cytokine signalling. In vitro analyses suggest that TYK2 also has kinase-independent, i.e., non-canonical, functions. We have generated gene-targeted mice harbouring a mutation in the ATP-binding pocket of the kinase domain. The Tyk2 kinase-inactive (Tyk2K923E) mice are viable and show no gross abnormalities. We show that kinase-active TYK2 is required for full-fledged type I interferon- (IFN) induced activation of the transcription factors STAT1-4 and for the in vivo antiviral defence against viruses primarily controlled through type I IFN actions. In addition, TYK2 kinase activity was found to be required for the protein’s stability. An inhibitory function was only observed upon over-expression of TYK2K923E in vitro. Tyk2K923E mice represent the first model for studying the kinase-independent function of a JAK in vivo and for assessing the consequences of side effects of JAK inhibitors

    Baseline JAK phosphorylation profile of peripheral blood leukocytes, studied by whole blood phosphospecific flow cytometry, is associated with 1-year treatment response in early rheumatoid arthritis

    Get PDF
    Background: We found recently that baseline signal transducer and activator of transcription 3 phosphorylation in peripheral blood CD4(+) T cells of patients with early rheumatoid arthritis (RA) is associated with treatment response to synthetic disease-modifying antirheumatic drugs (DMARDs). This prompted us to study the baseline phosphorylation profiles of Janus kinases (JAKs) in blood leukocytes with respect to treatment response in early RA. Methods: Thirty-five DMARD-naive patients with early RA provided blood samples for whole blood flow cytometric determination of phosphorylation of JAKs in CD4(+) and CD8(+) T cells, CD19(+) B cells, and CD14(+) monocytes. Treatment response was determined after 1 year of treatment with synthetic DMARDs, with remission defined as absence of tender and swollen joints and normal erythrocyte sedimentation rate. Exact logistic regression was used to investigate the association of baseline variables with treatment response. Ninety-five percent CIs of means were estimated by bias-corrected bootstrapping. Results: High JAK3 phosphorylation in CD4(+) and CD8(+) T cells, CD19(+) B cells, and CD14(+) monocytes and low JAK2 phosphorylation in CD14(+) monocytes were significantly associated with remission following treatment with synthetic DMARDs. Conclusions: Baseline JAK phosphorylation profile in peripheral blood leukocytes may provide a means to predict treatment response achieved by synthetic DMARDs among patients with early RA.Peer reviewe

    The Janus kinases (Jaks)

    Get PDF
    The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs

    A Novel Requirement for Janus Kinases as Mediators of Drug Resistance Induced by Fibroblast Growth Factor-2 in Human Cancer Cells

    Get PDF
    The development of resistance to chemotherapy is a major cause of cancer-related death. Elucidating the mechanisms of drug resistance should thus lead to novel therapeutic strategies. Fibroblast growth factor (FGF)-2 signaling induces the assembly of a multi-protein complex that provides tumor cells with the molecular machinery necessary for drug resistance. This complex, which involves protein kinase C (PKC) ε, v-raf murine sarcoma viral oncogene homolog B1 (B-RAF) and p70 S6 kinase β (S6K2), enhances the selective translation of anti-apoptotic proteins such as B-cell leukaemia/lymphoma-2 (BCL-2) and inhibitors of apoptosis protein (IAP) family members and these are able to protect multiple cancer cell types from chemotherapy-induced cell death. The Janus kinases (JAKs) are most noted for their critical roles in mediating cytokine signaling and immune responses. Here, we show that JAKs have novel functions that support their consideration as new targets in therapies aimed at reducing drug resistance. As an example, we show that the Janus kinase TYK2 is phosphorylated downstream of FGF-2 signaling and required for the full phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Moreover, TYK2 is necessary for the induction of key anti-apoptotic proteins, such as BCL-2 and myeloid cell leukemia sequence (MCL) 1, and for the promotion of cell survival upon FGF-2. Silencing JAK1, JAK2 or TYK2 using RNA interference (RNAi) inhibits FGF2-mediated proliferation and results in the sensitization of tumor cells to chemotherapy-induced killing. These effects are independent of activation of signal transducer and activator of transcription (STAT) 1, STAT3 and STAT5A/B, the normal targets of JAK signaling. Instead, TYK2 associates with the other kinases previously implicated in FGF-2-mediated drug resistance. In light of these findings we hypothesize that TYK2 and other JAKs are important modulators of FGF-2-driven cell survival and that inhibitors of these kinases will likely improve the effectiveness of other cancer therapies

    Production of IFN-β during Listeria monocytogenes Infection Is Restricted to Monocyte/Macrophage Lineage

    Get PDF
    The family of type I interferons (IFN), which consists of several IFN-α and one IFN-β, are produced not only after stimulation by viruses, but also after infection with non-viral pathogens. In the course of bacterial infections, these cytokines could be beneficial or detrimental. IFN-β is the primary member of type I IFN that initiates a cascade of IFN-α production. Here we addressed the question which cells are responsible for IFN-β expression after infection with the intracellular pathogen Listeria monocytogenes by using a genetic approach. By means of newly established reporter mice, maximum of IFN-β expression was observed at 24 hours post infection in spleen and, surprisingly, 48 hours post infection in colonized cervical and inguinal lymph nodes. Colonization of lymph nodes was independent of the type I IFN signaling, as well as bacterial dose and strain. Using cell specific reporter function and conditional deletions we could define cells expressing LysM as the major IFN-β producers, with cells formerly defined as Tip-DCs being the highest. Neutrophilic granulocytes, dendritic cells and plasmacytoid dendritic cells did not significantly contribute to type I IFN production

    Interferon-Alpha Administration Enhances CD8+ T Cell Activation in HIV Infection

    Get PDF
    Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation.To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNα for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNα treatment.The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (p = 0.006). These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cells = 2.62% at baseline and 2.17% after 12 weeks of interferon therapy). As plasma HIV levels fell with interferon therapy, this was correlated with a "paradoxical" increase in CD8+ T cell activation (p<0.001).Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection

    Maytenus diversifolia Ding Hou

    No full text
    原著和名: ハリツルマサキ科名: ニシキギ科 = Celastraceae採集地: 鹿児島県 喜界島 (大隅 喜界島)採集日: 1967/7/21採集者: 萩庭丈壽整理番号: JH032130国立科学博物館整理番号: TNS-VS-98213
    corecore