111 research outputs found
Input-to-state stability of infinite-dimensional control systems
We develop tools for investigation of input-to-state stability (ISS) of
infinite-dimensional control systems. We show that for certain classes of
admissible inputs the existence of an ISS-Lyapunov function implies the
input-to-state stability of a system. Then for the case of systems described by
abstract equations in Banach spaces we develop two methods of construction of
local and global ISS-Lyapunov functions. We prove a linearization principle
that allows a construction of a local ISS-Lyapunov function for a system which
linear approximation is ISS. In order to study interconnections of nonlinear
infinite-dimensional systems, we generalize the small-gain theorem to the case
of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov
function for an entire interconnection, if ISS-Lyapunov functions for
subsystems are known and the small-gain condition is satisfied. We illustrate
the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page
Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach
Lyapunov-Krasowskii functionals are used to design quantized control laws for
nonlinear continuous-time systems in the presence of constant delays in the
input. The quantized control law is implemented via hysteresis to prevent
chattering. Under appropriate conditions, our analysis applies to stabilizable
nonlinear systems for any value of the quantization density. The resulting
quantized feedback is parametrized with respect to the quantization density.
Moreover, the maximal allowable delay tolerated by the system is characterized
as a function of the quantization density.Comment: 31 pages, 3 figures, to appear in Mathematics of Control, Signals,
and System
Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition
In the stability analysis of large-scale interconnected systems it is
frequently desirable to be able to determine a decay point of the gain
operator, i.e., a point whose image under the monotone operator is strictly
smaller than the point itself. The set of such decay points plays a crucial
role in checking, in a semi-global fashion, the local input-to-state stability
of an interconnected system and in the numerical construction of a LISS
Lyapunov function. We provide a homotopy algorithm that computes a decay point
of a monotone op- erator. For this purpose we use a fixed point algorithm and
provide a function whose fixed points correspond to decay points of the
monotone operator. The advantage to an earlier algorithm is demonstrated.
Furthermore an example is given which shows how to analyze a given perturbed
interconnected system.Comment: 30 pages, 7 figures, 4 table
Robust Stabilization of Nonlinear Globally Lipschitz Delay Systems
International audienceThis paper studies the application of a recently proposed control scheme to globally Lipschitz nonlinear systems for which the input is delayed and applied with zero order hold, the measurements are sampled and delayed, and only an output is measured (i.e., the state vector is not available). The control scheme consists of an observer for the delayed state vector, an inter-sample predictor for the output signal, an approximate predictor for the future value of the state vector, and the nominal feedback law applied with zero order hold and computed for the predicted value of the future state vector. The resulting closed-loop system is robust with respect to modeling and measurement errors and robust to perturbations of the sampling schedule
- …