438 research outputs found

    The impact of foreign direct investment on Turkish manufacturing

    Get PDF
    In the course of the 1980s, Turkey came to recognize the need to change its attitude towards foreign investment, assigning a significant role to direct foreign investment. Hence, after the 1980s, there was a significant increase in the number of foreign firms operating in Turkey and the inf low of foreign capital to Turkey. Although the importance of foreign direct investment in the Turkish economy has been increasing, a variety of questions are far from being resolved. The important obstacle is that the available data do not let us analyze the extent and performance of foreign firms. In this study a considerable effort was made in collecting new data from foreign firms operating in the Turkish manufacturing industry. The main purpose of this study is to analyze and evaluate the economic effects of direct foreign investment on Turkish manufacturing. At the centre of our analysis has been the role of foreign firms in industrial concentration, technological choice and trade behaviour. In the first chapter we outline the main issues to be analyzed in this study and explain the method of collecting and processing data from foreign firms operating in the Turkish manufacturing industry. The second chapter discusses the theories and empirical evidence concerning the determinants of foreign direct investment. We also analyse the industrial distribution of direct foreign investment in Turkish manufacturing. In the third chapter we undertake an overview to the historical background of foreign firms and the legislation covering foreign investment in Turkey. At the beginning of the following three main chapters we analyze the performance of foreign firms in terms of those basic issues in the literature, according to the market imperfection approach, and later on we investigate the performance of foreign firms in Turkish manufacturing using our own data, supplemented by public sources of information

    Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK

    Full text link
    The PROMETHEUS Project is ongoing for the design and development of a 4-vane radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy beam transport (LEBT) line and diagnostics section. The main goal of the project is to achieve the acceleration of the low energy ions up to 1.5 MeV by an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source, transmission and beam dynamics are presented together with analytical studies performed with newly developed RFQ design code DEMIRCI. Simulation results shows that a beam transmission 99% could be achieved at 1.7 m downstream reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype, the so-called cold model, will be built for low power RF characterization. In this contribution the status of the project, design considerations, simulation results, the various diagnostics techniques and RFQ manufacturing issues are discussed.Comment: 4 pages, 8 figures, Proceedings of the 2nd International Beam Instrumentation Conference 2013 (IBIC'13), 16-19 Sep 2013, WEPC02, p. 65

    Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications

    Get PDF
    The thermodynamic La-Sr-Mn-Cr-O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La-Sr-Mn-Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1−x Sr x CrO3−δ and LaMn1−x Cr x O3−δ are reproduced by the model. The presented oxide database can be used for applied computational thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cell

    Thermodynamic Assessment of the La-Fe-O System

    Get PDF
    The La-Fe and the La-Fe-O systems are assessed using the Calphad approach, and the Gibbs energy functions of ternary oxides are presented. Oxygen and mutual La and Fe solubilities in body-centered cubic (bcc) and face-centered cubic (fcc) structured metallic phases are considered in the modeling. Oxygen nonstoichiometry of perovskite-structured La1±x Fe1±y O3−δ is modeled using the compound energy formalism (CEF), and the model is submitted to a defect chemistry analysis. The contribution to the Gibbs energy of LaFeO3 due to a magnetic order-disorder transition is included in the model description. Lanthanum-doped hexaferrite, LaFe12O19, is modeled as a stoichiometric phase. Δf,elements°H 298K (LaFe12O19)=−5745kJ/mol, °S 298K (LaFe12O19)=683J/mol·K, and Δf,oxides°G (LaFe12O19)=4634−37.071T (J/mol) from 1073 to 1723K are calculated. The liquid phase is modeled using the two-sublattice model for ionic liquids. The calculated La-Fe phase diagram, LaO1.5-FeO x phase diagrams at different oxygen partial pressures, and phase equilibria of the La-Fe-O system at 873, 1073, and 1273K as a function of oxygen partial pressures are presente

    Graphene oxide integrated sensor for electrochemical monitoring ofmitomycin C–DNA interaction

    Get PDF
    WOS: 000302308600025PubMed ID: 22439135We present a graphene oxide (GO) integrated disposable electrochemical sensor for the enhanced detection of nucleic acids and the sensitive monitoring of the surface-confined interactions between the anticancer drug mitomycin C (MC) and DNA. Interfacial interactions between immobilized calf thymus double-stranded (dsDNA) and anticancer drug MC were investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Based on three repetitive voltammetric measurements of 120 mu g mL(-1) DNA immobilized on GO-modified electrodes, the RSD % (n = 3) was calculated as 10.47% and the detection limit (DL) for dsDNA was found to be 9.06 mu g mL(-1). EIS studies revealed that the binding of the drug MC to dsDNA leads to a gradual decrease of its negative charge. As a consequence of this interaction, the negative redox species were allowed to approach the electrode, and thus increase the charge transfer kinetics. On the other hand, DPV studies exploited the decrease of the guanine signal due to drug binding as the basis for specifically probing the biointeraction process between MC and dsDNA.Royal Society through Joint Project Scheme [1212R0168]; Turkish Academy of Sciences (TUBA)Turkish Academy of SciencesThis work was supported by the Royal Society through Joint Project Scheme (Project No. 1212R0168). A.E. acknowledges the Turkish Academy of Sciences (TUBA) as an Associate member for its partial support. Authors would like to thank Dr. M. McMullan for the assistance on the synthesis of graphene oxide

    Case Report Inguinal Hernia Containing Uterus, Fallopian Tube, and Ovary in a Premature Newborn

    Get PDF
    A female infant weighing 2,200 g was delivered at 34 weeks of gestation by vaginal delivery. She presented with an irreducible mass in the left inguinal region at 32 days of age. An ultrasonography (US) was performed and an incarcerated hernia containing uterus, fallopian tube, and ovary was diagnosed preoperatively. Surgery was performed through an inguinal approach; the uterus, fallopian tube, and ovary were found in the hernia sac. High ligation and an additional repair of the internal inguinal ring were performed. Patent processus vaginalis was found during contralateral exploration and also closed. The postoperative course was uneventful. After one year of follow-up, there have been no signs of recurrence

    Effect Of G2706A and G1051A polymorphisms of the ABCA1 gene on the lipid, oxidative stress and homocystein levels in Turkish patients with polycystıc ovary syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity, insulin resistance and hyperandrogenism, crucial parameters of Polycystic ovary syndrome (PCOS) play significant pathophysiological roles in lipidemic aberrations associated within the syndrome. Parts of the metabolic syndrome (low HDL and insulin resistance) appeared to facilitate the association between PCOS and coronary artery disease, independently of obesity. ABCA1 gene polymorphism may be altered this components in PCOS patients.</p> <p>In this study, we studied 98 PCOS patients and 93 healthy controls. All subjects underwent venous blood drawing for complete hormonal assays, lipid profile, glucose, insulin, malondialdehyde, nitric oxide, disulfide levels and ABCA genetic study.</p> <p>Results</p> <p>In PCOS group fasting glucose, DHEAS, 17-OHP, free testosterone, total-cholesterol, triglyceride, LDL-cholesterol and fibrinogen were significantly different compare to controls. The genotype ABCA G2706A distribution differed between the control group (GG 60.7%, GA 32.1%, AA 7.1%) and the PCOS patients (GG 8.7%, GA 8.7%, AA 76.8%). The frequency of the A allele (ABCAG2706A) was higher in PCOS patients than control group with 13,0% and 23,2%, respectively. In this study, the homocystein and insulin levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes.</p> <p>Conclusions</p> <p>We found higher percentage of AA genotype and A allele of ABCA G2706A in PCOS patients compare to controls. The fasting insulin and homocystein levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes.</p
    corecore