74 research outputs found

    Genetic and environmental influence on thyroid gland volume and thickness of thyroid isthmus: a twin study.

    Get PDF
    Objectives Decreased thyroid volume has been related to increased prevalence of thyroid cancer.Subjects and methods One hundred and fourteen Hungarian adult twin pairs (69 monozygotic, 45 dizygotic) with or without known thyroid disorders underwent thyroid ultrasound. Thickness of the thyroid isthmus was measured at the thickest portion of the gland in the midline using electronic calipers at the time of scanning. Volume of the thyroid lobe was computed according to the following formula: thyroid height*width*depth*correction factor (0.63).Results Age-, sex-, body mass index- and smoking-adjusted heritability of the thickness of thyroid isthmus was 50% (95% confidence interval [CI], 35 to 66%). Neither left nor right thyroid volume showed additive genetic effects, but shared environments were 68% (95% CI, 48 to 80%) and 79% (95% CI, 72 to 87%), respectively. Magnitudes of monozygotic and dizygotic co-twin correlations were not substantially impacted by the correction of covariates of body mass index and smoking. Unshared environmental effects showed a moderate influence on dependent parameters (24-50%).Conclusions Our analysis support that familial factors are important for thyroid measures in a general twin population. A larger sample size is needed to show whether this is because of common environmental (e.g. intrauterine effects, regional nutrition habits, iodine supply) or genetic effects

    High Performance Hybrid Upper Stage Motor

    No full text

    Test Facility Development for the 15,000 lb Thrust Peregrine Hybrid Sounding Rocket

    No full text

    Effect of Paraffin-LDPE Blended Fuel on the Hybrid Rocket Motor

    No full text

    Design and Development of a 100km Nitrous Oxide/Paraffin Hybrid Rocket Vehicle

    No full text

    Hybrid Propulsion In-Situ Resource Utilization Test Facility Results

    No full text
    Hybrid rockets present a promising alternative to conventional chemical propulsion systems for In-Situ Resource Utilization (ISRU) and in-space applications. While they have many benefits for these applications, there are still many small details that require research before they can be adopted into flight systems. A flexible test facility was developed at JPL to test operation of hybrid motors at small scale (5 cm outer diameter fuel grains) over a range of conditions. Specifically, this paper studies two of the major advantages: low temperature performance and throttling. Paraffin-based hybrid rockets are predicted to have good performance at low temperatures. This could significantly decrease the overall system mass by minimizing the thermal conditioning required for Mars or outer planet applications. Therefore, the coefficient of thermal expansion and glass transition of paraffin are discussed. Additionally, deep throttling has been considered for several applications. This was a natural starting point for hotfire testing using the hybrid propulsion ISRU test facility. Additionally, short length to diameter ratio (L/D) fuel grains are tested to determine if these systems can be packaged into geometrically constrained spaces
    corecore