16 research outputs found

    Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents: SUBCORTICAL AFFERENTS OF PERIRHINAL, POSTRHINAL, AND ENTORHINAL CORTICES

    Get PDF
    In this study we characterized the subcortical afferents for the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA). We analyzed 33 retrograde tract-tracing experiments distributed across the five regions. For each experiment, we estimated the total numbers, percentages, and densities of labeled cells in 36 subcortical structures and nuclei distributed across septum, basal ganglia, claustrum, amygdala, olfactory structures, thalamus, and hypothalamus. We found that the complement of subcortical inputs differs across the five regions, especially the PER and POR. The PER receives input from the reuniens, suprageniculate, and medial geniculate thalamic nuclei as well as the amygdala. Overall, the subcortical inputs to the PER are consistent with a role in perception, multimodal processing, and the formation of associations that include the motivational significance of individual items and objects. Subcortical inputs to the POR were dominated by the dorsal thalamus, particularly the lateral posterior nucleus, a region implicated in visuospatial attention. The complement of subcortical inputs to the POR is consistent with a role in representing and monitoring the local spatial context. We also report that, in addition to the PER, the LEA and the medial band of the MEA also receive strong amygdala input. In contrast, subcortical input to the POR and the MEA lateral band includes much less amygdala input and is dominated by dorsal thalamic nuclei, particularly nuclei involved in spatial information processing. Like the cortical inputs, the patterns of subcortical inputs to these regions are consistent both with the view that the dorsal hippocampus is important for spatial cognition and the ventral hippocampus is important for affective cognition, and the view that they provide considerable functional integration. We conclude that the patterns of subcortical inputs to the PER, POR, and the entorhinal LEA and MEA provide further evidence for functional differentiation in the medial temporal lobe

    Facilitation of Serotonin Signaling by SSRIs is Attenuated by Social Isolation

    Get PDF
    Hypofunction of the serotonergic system is often associated with major depression and obsessive compulsive disorder (OCD). Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to treat these disorders, and require 3–6 weeks of chronic treatment before improvements in the symptoms are observed. SSRIs inhibit serotonin's transporter, and in doing so, increase extracellular serotonin concentrations. Thus, efficacy of SSRIs likely depends upon the brain's adaptive response to sustained increases in serotonin levels. Individual responsiveness to SSRI treatment may depend on a variety of factors that influence these changes, including ongoing stress. Social isolation is a passive, naturalistic form of chronic mild stress that can model depression in rodents. In this study, we examined how 20-day treatment with the SSRI citalopram (CIT) alters marble-burying (MB), open field behavior, and serotonin signaling in single- vs pair-housed animals. We used in vivo voltammetry to measure electrically evoked serotonin, comparing release rate, net overflow, and clearance. Pair-housed mice were significantly more responsive to CIT treatment, exhibiting reduced MB and facilitation of serotonin release that positively correlated with the frequency of electrical stimulation. These effects of CIT treatment were attenuated in single-housed mice. Notably, although CIT treatment enhanced serotonin release in pair-housed mice, it did not significantly alter uptake rate. In summary, we report that chronic SSRI treatment facilitates serotonin release in a frequency-dependent manner, and this effect is blocked by social isolation. These findings suggest that the efficacy of SSRIs in treating depression and OCD may depend on ongoing stressors during treatment

    Reversal of social deficits by subchronic oxytocin in two autism mouse models

    Get PDF
    Social deficits are a hallmark feature of autism spectrum disorder (ASD) and related developmental syndromes. Although there is no standard treatment for social dysfunction, clinical studies have identified oxytocin as a potential therapeutic with prosocial efficacy. We have previously reported that peripheral oxytocin treatment can increase sociability and ameliorate repetitive stereotypy in adolescent mice from the C58/J model of ASD-like behavior. In the present study, we determined that prosocial oxytocin effects were not limited to the adolescent period, since C58/J mice, tested in adulthood, demonstrated significant social preference up to 2 weeks following subchronic oxytocin treatment. Oxytocin was also evaluated in adult mice with underexpression of the N-methyl-D-aspartate receptor NR1 subunit (encoded by Grin1), a genetic model of autism- and schizophrenia- like behavior. Subchronic oxytocin had striking prosocial efficacy in male Grin1 knockdown mice; in contrast, chronic regimens with clozapine (66 mg/kg/day) or risperidone (2 mg/kg/day) failed to reverse deficits in sociability. Neither the subchronic oxytocin regimen, nor chronic treatment with clozapine or risperidone, reversed impaired prepulse inhibition in the Grin1 knockdown mice. Overall, these studies demonstrate oxytocin can enhance sociability in mouse models with divergent genotypes and behavioral profiles, adding to the evidence that this neurohormone could have therapeutic prosocial efficacy across a spectrum of developmental disorders

    Disruption of social approach by MK-801, amphetamine, and fluoxetine in adolescent C57BL/6J mice

    Get PDF
    Autism is a severe neurodevelopmental disorder, diagnosed on the basis of core behavioral symptoms. Although the mechanistic basis for the disorder is not yet known, genetic analyses have suggested a role for abnormal excitatory/inhibitory signaling systems in brain, including dysregulation of glutamatergic neurotransmission. In mice, the constitutive knockdown of NMDA receptors leads to social deficits, repetitive behavior, and self-injurious responses that reflect aspects of the autism clinical profile. However, social phenotypes differ with age: mice with reduced NMDA-receptor function exhibit hypersociability in adolescence, but markedly deficient sociability in adulthood. The present studies determined whether acute disruption of NMDA neurotransmission leads to exaggerated social approach, similar to that observed with constitutive disruption, in adolescent C57BL/6J mice. The effects of MK-801, an NMDA receptor antagonist, were compared with amphetamine, a dopamine agonist, and fluoxetine, a selective serotonin reuptake inhibitor, on performance in a three-chamber choice task. Results showed that acute treatment with MK-801 led to social approach deficits at doses without effects on entry numbers. Amphetamine also decreased social preference, but increased number of entries at every dose. Fluoxetine (10 mg/kg) had selective effects on social novelty preference. Withdrawal from a chronic ethanol regimen decreased activity, but did not attenuate sociability. Low doses of MK-801 and amphetamine were also evaluated in a marble-burying assay for repetitive behavior. MK-801, at a dose that did not disrupt sociability or alter entries, led to a profound reduction in marble-burying. Overall, these findings demonstrate that moderate alteration of NMDA, dopamine, or serotonin function can attenuate social preference in wild type mice

    Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism

    Get PDF
    Restricted repetitive behaviors are core symptoms of autism spectrum disorders (ASDs). The range of symptoms encompassed by the repetitive behavior domain includes lower-order stereotypy and self-injury, and higher-order indices of circumscribed interests and cognitive rigidity. Heterogeneity in clinical ASD profiles suggests that specific manifestations of repetitive behavior reflect differential neuropathology. The present studies utilized a set of phenotyping tasks to determine a repetitive behavior profile for the C58/J mouse strain, a model of ASD core symptoms. In an observational screen, C58/J demonstrated overt motor stereotypy, but not over-grooming, a commonly-used measure for mouse repetitive behavior. Amphetamine did not exacerbate motor stereotypy, but had enhanced stimulant effects on locomotion and rearing in C58/J, compared to C57BL/6J. Both C58/J and Grin1 knockdown mice, another model of ASD-like behavior, had marked deficits in marble-burying. In a nose poke task for higher-order repetitive behavior, C58/J had reduced holeboard exploration and preference for non-social, versus social, olfactory stimuli, but did not demonstrate cognitive rigidity following familiarization to an appetitive stimulus. Analysis of available high-density genotype data indicated specific regions of divergence between C58/J and two highly-sociable strains with common genetic lineage. Strain genome comparisons identified autism candidate genes, including Cntnap2 and Slc6a4, located within regions divergent in C58/J. However, Grin1, Nlgn1, Sapap3, and Slitrk5, genes linked to repetitive over-grooming, were not in regions of divergence. These studies suggest that specific repetitive phenotypes can be used to distinguish ASD mouse models, with implications for divergent underlying mechanisms for different repetitive behavior profiles

    Prosocial effects of oxytocin in two mouse models of autism spectrum disorders

    Get PDF
    Clinical evidence suggests that oxytocin treatment improves social deficits and repetitive behavior in autism spectrum disorders (ASDs). However, the neuropeptide has a short plasma half-life and poor ability to penetrate the blood-brain barrier. In order to facilitate the development of more bioavailable oxytocinergic compounds as therapeutics to treat core ASD symptoms, small animal models must be validated for preclinical screens. This study examined the preclinical utility of two inbred mouse strains, BALB/cByJ and C58/J, that exhibit phenotypes relevant to core ASD symptoms. Mice from both strains were intraperitoneally administered oxytocin, using either acute or sub-chronic regimens. Acute oxytocin did not increase sociability in BALB/cByJ; however, sub-chronic oxytocin had significant prosocial effects in both BALB/cByJ and C58/J. Increased sociability was observed 24 hours following the final oxytocin dose in BALB/cByJ, while prosocial effects of oxytocin emerged 1–2 weeks post-treatment in C58/J. Furthermore, acute oxytocin decreased motor stereotypy in C58/J and did not induce hypoactivity or anxiolytic-like effects in an open field test. This study demonstrates that oxytocin administration can attenuate social deficits and repetitive behavior in mouse models of ASD, dependent on dose regimen and genotype. These findings provide validation of the BALB/cByJ and C58/J models as useful platforms for screening novel drugs for intervention in ASDs and for elucidating the mechanisms contributing to the prosocial effects of oxytocin

    The hippocampus and disambiguation of overlapping sequences.

    No full text

    The hippocampus and disambiguation of overlapping sequences.

    No full text
    Recent models of hippocampal function emphasize its potential role in disambiguating sequences of events that compose distinct episodic memories. In this study, rats were trained to distinguish two overlapping sequences of odor choices. The capacity to disambiguate the sequences was measured by the critical odor choice after the overlapping elements of the sequences. When the sequences were presented in rapid alternation, damage to the hippocampus, produced either by infusions of the neurotoxin ibotenic acid or by radiofrequency current, produced a severe deficit, although animals with radiofrequency lesions relearned the task. When the sequences were presented spaced apart and in random order, animals with radiofrequency hippocampal lesions could perform the task. However, they failed when a memory delay was imposed before the critical choice. These findings support the hypothesis that the hippocampus is involved in representing sequences of nonspatial events, particularly when interference between the sequences is high or when animals must remember across a substantial delay preceding items in a current sequence

    Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17(9

    No full text
    ABSTRACT: The entorhinal cortex (EC) serves a pivotal role in corticohippocampal interactions, but a complete description of its extrinsic connections has not been presented. Here, we have summarized the cortical, subcortical, and hippocampal connections of the lateral entorhinal area (LEA) and the medial entorhinal area (MEA) in the rat. We found that the targets and relative strengths of the entorhinal connections are strikingly different for the LEA and MEA. For example, the LEA receives considerably heavier input from the piriform and insular cortices, whereas the MEA is more heavily targeted by the visual, posterior parietal, and retrosplenial cortices. Regarding subcortical connections, the LEA receives heavy input from the amygdala and olfactory structures, whereas the MEA is targeted by the dorsal thalamus, primarily the midline nuclei and also the dorsolateral and dorsoanterior thalamic nuclei. Differences in the LEA and MEA connections with hippocampal and parahippocampal structures are also described. In addition, because the EC is characterized by bands of intrinsic connectivity that span the LEA and MEA and project to different septotemporal levels of the dentate gyrus, special attention was paid to the efferents and afferents of those bands. Finally, we summarized the connections of the dorsocaudal MEA, the region in which the entorhinal ''grid cells'' were discovered. The subregional differences in entorhinal connectivity described here provide further evidence for functional diversity within the EC. It is hoped that these findings will inform future studies of the role of the EC in learning and memory. V V C 2007 Wiley-Liss, Inc
    corecore