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Abstract

Social deficits are a hallmark feature of autism spectrum disorder (ASD) and related 

developmental syndromes. Although there is no standard treatment for social dysfunction, clinical 

studies have identified oxytocin as a potential therapeutic with prosocial efficacy. We have 

previously reported that peripheral oxytocin treatment can increase sociability and ameliorate 

repetitive stereotypy in adolescent mice from the C58/J model of ASD-like behavior. In the 

present study, we determined that prosocial oxytocin effects were not limited to the adolescent 

period, since C58/J mice, tested in adulthood, demonstrated significant social preference up to 2 

weeks following subchronic oxytocin treatment. Oxytocin was also evaluated in adult mice with 

underexpression of the N-methyl-D-aspartate receptor NR1 subunit (encoded by Grin1), a genetic 

model of autism- and schizophrenia- like behavior. Subchronic oxytocin had striking prosocial 

efficacy in male Grin1 knockdown mice; in contrast, chronic regimens with clozapine (66 mg/kg/

day) or risperidone (2 mg/kg/day) failed to reverse deficits in sociability. Neither the subchronic 

oxytocin regimen, nor chronic treatment with clozapine or risperidone, reversed impaired prepulse 

inhibition in the Grin1 knockdown mice. Overall, these studies demonstrate oxytocin can enhance 

sociability in mouse models with divergent genotypes and behavioral profiles, adding to the 
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evidence that this neurohormone could have therapeutic prosocial efficacy across a spectrum of 

developmental disorders.
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1. Introduction

Oxytocin is a neuropeptide hormone with a long-recognized role in maternal responses and 

mother-infant bonding. Clinical studies in subjects with autism spectrum disorder (ASD) 

have found that acute oxytocin can improve social function and decrease motor stereotypy 

and other forms of repetitive behavior (Andari et al., 2010; Guastella et al., 2010; Hollander 

et al., 2003, 2007). Further, Hall and colleagues (2012) observed that acute oxytocin could 

ameliorate indicators of social anxiety in male adolescents and adults with fragile X 

syndrome. One recent study using a 5-week regimen with intranasal oxytocin in young 

children (3 to 8 years in age) with ASD found improved social responsivity, although no 

concomitant reduction in abnormal repetitive behavior (Yatawara et al. 2015). These initial 

reports also suggest that oxytocin might not have the same potential for adverse events as 

found with more powerful psychoactive agents, such as risperidone or fluoxetine, used to 

treat co-morbid symptoms in ASD (Mahajan et al., 2012; West et al., 2009; Yatawara et al. 

2015). However, not all clinical trials using intranasal application of oxytocin to ameliorate 

social deficits or other symptoms have proven successful (Anagnostou et al. 2012; Cacciotti-

Saiji et al. 2015; Dadds et al. 2014), indicating the need for further investigation of oxytocin 

as a therapeutic agent.

Our research group has reported that peripheral administration of oxytocin can alleviate 

sociability deficits in two mouse models of autism-like behavior, the BALB/cByJ and C58/J 

inbred strains (Teng et al., 2013). Previous work has shown that BALB/cByJ and the related 

substrain, BALB/cJ, are characterized by a lack of social preference in a three-chambered 

choice task and by anxiety-like behavior in an elevated plus maze (Brodkin et al., 2004; Moy 

et al., 2007; Sankoorikal et al., 2006). Our previous study showed that, while acute oxytocin 

treatment did not reverse social deficits, a subchronic regimen of four injections, given 

across 8-9 days, led to significant sociability in adolescent BALB/cByJ mice, tested 24 hours 

following the final dose (Teng et al., 2013).

Our group has also investigated oxytocin effects in the C58/J inbred strain, which has low 

sociability in a three-chambered task, deficits in social transmission of food preference, and 

overt repetitive behavior (Moy et al., 2008b, 2014; Muehlmann et al., 2012; Ryan et al., 

2010; Silverman et al., 2012). We found that a subchronic oxytocin regimen had prosocial 

effects in adolescent male and female C58/J mice, with increases in social preference 

emerging one or two weeks following treatment (Teng et al., 2013). Acute, but not 

subchronic, administration of oxytocin led to significant decreases in abnormal repetitive 

behavior.
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In the present studies, we investigated whether oxytocin would exert prosocial effects in 

adult C58/J mice, similar to our findings in adolescents. Motivation for social affiliation and 

regulation of social interactions can differ between adolescents and adults (Spear 2011; see 

also Ernst et al., 2006). For example, Morales and Spear (2014) reported that, in a two-

chamber test box, adolescent rats had higher levels of social interaction and a higher 

frequency of crossovers toward an unfamiliar social partner than adult rats. These data 

support a greater sensitivity to the rewarding aspects of novel social stimuli during 

adolescence, and raise the possibility that oxytocin might be most effective at this stage of 

development, while long-term social deficits in adults could be more recalcitrant to reversal.

These new studies also extended the evaluation of oxytocin to a third model of ASD-like 

behavior and synaptopathology, the Grin1 knockdown mouse. Although the mechanistic 

basis for ASD is not known, genetic analyses in human populations have implicated several 

genes important for synaptic function, including GRIN1, which encodes the obligatory 

NMDAR1 subunit of the N-methyl-D-aspartate (NMDA) receptor (Abrahams and 

Geschwind 2008; Voineagu et al., 2011; Zeidan-Chulia et al., 2014); however, not all studies 

have found an positive association between ASD and GRIN1 (e.g. Sanders et al. 2013; 

Tarabeux et al. 2011). There is growing evidence that alterations in NMDA receptor 

signaling play a role in ASD and other neurodevelopmental disorders (for recent reviews, 

see Burnashev et al. 2015; Lee et al. 2015), including reports that autism candidate genes, 

such as NEUROLIGIN-1 and SHANK3, serve as regulators of NMDA receptor function 

(Budreck et al. 2013; Duffney et al. 2013). Mice with reduced Grin1 expression recapitulate 

many ASD features, including overt social deficits, inappropriate social interaction, 

abnormal repetitive behavior, self-injurious responses, and impaired sensorimotor gating 

(Billingslea et al. 2014; Duncan et al., 2004, Finlay et al. 2015; Gandal et al., 2012, 

Milenkovic et al., 2014; Mohn et al., 1999, Moy et al., 2008a, 2012, 2014; Saunders et al. 

2013). We determined the effects of oxytocin on social deficits, reduced prepulse inhibition, 

and hyperactivity in Grin1 knockdown mice. We also examined whether chronic regimens 

with atypical antipsychotics, initiated in early adolescence or young adulthood, have 

prosocial efficacy in the Grin1 knockdown model.

2. Methods and materials

2.1. Animals

C58/J mice were offspring of breeding pairs obtained from Jackson Laboratories (Bar 

Harbor, ME). Grin1neo/neo mice engineered with a neomycin resistance gene (neo) in intron 

20 of the Grin1 locus and Grin1+/+ littermate controls were generated from heterozygous 

breeder pairs, as previously described (Mohn et al., 1999; Moy et al., 2012). Experimenters 

conducting the behavioral tests were blind to genotype.

Mice were maintained in groups of 2-4 animals per polycarbonate mouse cage, in a room 

under a 12-hour light/dark cycle (lights off at 7pm). ProLab RMH 3000 chow and water 

were provided ad libitum. All animal procedures were conducted in strict compliance with 

the animal welfare policies set by the National Institutes of Health and the University of 

North Carolina (UNC), and were approved by the UNC Institutional Animal Care and Use 

Committee.
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2.2. Drug treatment regimens

2.2.1. Oxytocin—Oxytocin (Bachem, Torrance, CA) was dissolved in saline containing 

0.002% glacial acetic acid. All injections were administered IP (intraperitoneal) in a volume 

of 10.0 ml/kg. For the subchronic regimen, mice were given four injections of vehicle or 

oxytocin (1.0 or 2.0 mg/kg) across 8-9 days, with at least 48 hr between each injection (i.e. 

mice were injected on sequential weekdays WFMW or WFTTh). Experimenters conducting 

the behavioral tests were blind to drug treatments.

2.2.2. Chronic clozapine and risperidone regimens in Grin1 mice—Chronic 

regimens with clozapine (30 days; 66 mg/kg/day) or risperidone (21 days; 2.0 mg/kg/day) 

were initiated with a preliminary ramping up of drug dose to minimize sedative or other side 

effects at the beginning of treatment. Doses were selected to reflect therapeutic dosage in 

humans, determined by clinical levels of dopamine D2 receptor occupancy (Kapur et al., 

2003; Wadenberg et al., 2001).

Slow-release pellets were utilized for chronic clozapine administration because of 

difficulties in higher-dose drug solubility for osmotic minipumps (Kapur et al., 2003) and 

issues with variable plasma levels during administration in drinking water (Perez-Costas et 

al., 2008). At 11-14 weeks of age, mice were briefly anesthetized by isoflurane and 

implanted, using a trocar injector, with subcutaneous 30-day slow-release clozapine or sham 

tablets (Innovative Research of America, Sarasota, FL). The target dosage of 66 mg/kg/day 

was reached by incremental stages across 8 days, with 2-3 total pellet implants per subject. 

Following each implant, the trocar injection site was sealed using Tissuemend (Jeffers Inc., 

Dothan, AL).

For the initial acclimation to risperidone (Sigma-Aldrich, St. Louis, MO), adolescent mice 

(starting at age 33-38 days) received 3 IP injections of either saline vehicle containing 1% 

glacial acetic acid (adjusted to pH 5.5) or risperidone (0.3 mg/kg), with 2-3 days between 

each injection. One day following the third injection, mice were briefly anesthetized by 

isoflurane and implanted with a subcutaneous osmotic minipump (Model 1002; Alzet; 

Braintree Sci. Inc., Braintree, MA) containing either risperidone (2.0 mg/kg/day) or vehicle, 

for a 14-day delivery. At the end of the 14-day period, mice were again anesthetized, and the 

depleted 14-day pump was replaced by a new 7-day pump (Model 1007D) for the final 

phase of the 21-day regimen. This pump replacement allowed dosage to be adjusted for 

increased body weight during the chronic risperidone treatment.

2.3. C58/J inbred strain model

Oxytocin has persistent effects on social behavior in adolescent C58/J mice (Teng et al., 

2013). In this study, we investigated whether social deficits in adult C58/J mice could also 

be reversed by oxytocin treatment. Subjects were male and female mice (7-8 of each sex per 

treatment group; 5-6 months of age at time of testing), treated using a subchronic regimen of 

vehicle or 1.0 mg/kg oxytocin. Mice were tested in the 3-chamber choice task at two time 

points, 24 hr and 2 wk post-treatment.
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2.4. Grin1 knockdown model

2.4.1. Acute oxytocin effects on open field activity—Subjects were 7-9 male mice 

and 6-9 female mice of each genotype (Grin1+/+ and Grin1neo/neo) per treatment group, 8-11 

months in age, taken from 12 litters. Each mouse was given 3 1-hr tests, one with vehicle 

pretreatment and one with each dose of oxytocin (0.5 and 1.0 mg/kg), with 1 week between 

each test. A balanced treatment design was used, so that order of treatments was balanced 

for genotype and sex across the 3 tests. Mice were placed into the activity chambers 

immediately after each treatment.

2.4.2. Acute oxytocin effects on sensorimotor gating—Subjects were 12-13 male 

mice and 10-13 female mice of each genotype (Grin1+/+ and Grin1neo/neo), 5-7 months of 

age, taken from 23 litters. The acoustic startle test was conducted 50 min following 

treatment with vehicle or oxytocin (1.0 mg/kg). Each mouse was given 2 sessions, one with 

vehicle pretreatment and one with oxytocin pretreatment, with 1 week between each session. 

A balanced treatment design was used, so that order of treatment was balanced by genotype 

and sex across the 2 tests.

2.4.3. Subchronic oxytocin regimen—Subjects were 8-9 male mice and 8-10 female 

mice of each genotype (Grin1+/+ and Grin1neo/neo) per treatment group (vehicle or 1.0 mg/kg 

oxytocin), tested at 3-5 months of age, taken from 29 litters. Each subject was tested in the 

3-chamber choice task approximately 24 hr following the final treatment. Mice were further 

tested in an acoustic startle assay 48 hr post-treatment, and the marble-burying assay 4-5 

days post-treatment. Because no genotype or treatment effects were observed in the female 

groups, an additional set of female Grin1 mice (6-8 of each genotype, 7 months in age, taken 

from 5 litters) were given subchronic treatment with a higher dose of oxytocin (2.0 mg/kg) 

and tested in the 3-chamber choice task.

2.4.4. Chronic clozapine—Subjects were 4-8 male mice and 4-6 female mice of each 

genotype per treatment group, 3-4 months of age at time of behavioral testing, taken from 23 

litters. Mice were tested in the 3-chamber choice task 32-35 days following the final 

subcutaneous implant of a 30-day slow-release pellet. Mice were also tested in an acoustic 

startle assay at two time points, 15-16 days and 35-38 days following the final pellet 

implantation.

2.4.5. Chronic risperidone—Subjects were 6-9 male mice and 5-8 female mice of each 

genotype per treatment group, 60-70 days of age at time of behavioral testing, taken from 23 

litters. Mice were tested in the 3-chamber choice task 23-26 days following the start of a 21-

day chronic regimen (administered by osmotic minipump). Mice were also tested in an 

acoustic startle assay 24-27 days and a marble-burying task 28-29 days after initiation of the 

chronic regimen.

2.5. Behavioral testing procedures

2.5.1. Three-chamber social choice test—Social approach was assessed in a 3-

chamber Plexiglas box (procedure modified from Moy et al., 2007). The test started with a 

10-min habituation phase, with free exploration of the empty test box, followed by a 10-min 
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test for sociability. During the sociability phase, the test mouse was given a choice between 

an unfamiliar stranger mouse (a sex-matched C57BL/6J adult), contained in a Plexiglas cage 

placed in one side chamber, or an empty Plexiglas cage in the opposite side chamber. Cages 

were drilled with holes to allow investigation of the stranger. Measures were taken of the 

time spent in each chamber, time spent in 5 cm proximity to each cage, and number of 

entries into each chamber, by an automated image tracking system (Ethovision, Noldus 

Information Technology, Wageningen, the Netherlands).

2.5.2. Open field test—Activity was assessed in a photocell-equipped automated open 

field (41 cm × 41 cm × 30 cm; Versamax System, AccuScan Instruments, Columbus, OH). 

Measures were taken of total distance traveled, rearing movements, and time spent in the 

center region of the chamber, for each 1-hr test.

2.5.3. Acoustic startle test—Mice were evaluated for acoustic startle responses with an 

SR-Lab system (San Diego Instruments). Each test session consisted of a 5-min habituation 

period, followed by 42 trials: no-stimulus trials, trials with the acoustic startle stimulus (40 

ms; 120 dB) alone, and trials in which a prepulse stimulus (20 ms; either 74, 78, 82, 86, or 

90 dB) had onset 100 ms before the onset of the startle stimulus. The different trial types 

were presented in blocks of 7, in randomized order within each block, with an average 

intertrial interval of 15 sec. Measures were taken of startle amplitude, defined as the peak 

response during a 65-msec sampling window following onset of the startle stimulus. PPI was 

calculated as 100 - [(response amplitude for prepulse stimulus and startle stimulus together / 

response amplitude for startle stimulus alone) × 100].

2.5.4. Marble-burying assay—Each subject was tested in a polycarbonate mouse cage 

located in a sound-attenuating chamber with ceiling light and fan. The cage contained 5 cm 

deep clean corncob bedding, with 20 black glass marbles (14 mm diameter) arranged in an 

equidistant 5 X 4 array on top of the bedding. Measures were taken of the number of 

marbles covered 2/3 or more by the bedding after a 30 min test.

2.6. Statistical analysis

Data were analyzed with one-way, two-way, or repeated measures analysis of variance 

(ANOVA), with factors treatment, sex, and genotype (dependent on experiment), using 

Statview software (SAS, Cary, NC). Repeated measures included side of social test box, test 

session, or prepulse sound level. Separate repeated measures ANOVAs were conducted for 

each sex to determine oxytocin effects on sociability in male and female mice. Within-

treatment repeated measures ANOVAs were used to determine side preference in the social 

choice test. Fisher's protected least-significant difference (PLSD) tests were used for 

comparing group means only when a significant F value was determined by ANOVA. 

Significance was set at p<0.05.
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3. Results

3.1. Prosocial oxytocin effects in adult C58/J mice

3.1.1. Sociability in male and female C58/J mice—Previous work in our laboratory 

has shown that subchronic oxytocin has persistent prosocial effects in adolescent C58/J mice 

(Teng et al., 2013). In the present study, both male and female adult C58/J mice (ages 5-6 

months) treated with oxytocin, but not vehicle, had significant preference for spending time 

in the stranger side of a 3-chamber box (Fig. 1). In the male mice, the prosocial oxytocin 

effects were evident at 24 hr and 2 wk post-treatment [within-treatment group post-hoc 

analyses following significant effect of side, F(1,14)=9.38, p=0.0084; determined by a 3-

way repeated measures ANOVA, with factors treatment, side, and time point for testing] 

(Fig. 1A, B). In the male groups, there was a non-significant trend for a treatment x side 

interaction [F(1,14)=3.8, p=0.0717]. Female mice treated with oxytocin demonstrated 

significant preference for the stranger side only at the 24-hour time point [within-treatment 

group post-hoc analyses following significant effect of side, F(1,13)=11.40, p=0.005] (Fig. 
1C).

3.1.2. Preference for social proximity in male and female C58/J mice—We have 

previously reported that adolescent C58/J male mice have positive sociability with the 

measure of sniffing directed towards a stranger mouse (Moy et al., 2008). The present study 

used a similar measure, proximity to each cage. In the first test, given 24 hr following the 

subchronic regimen, the C58/J male mice treated with vehicle, but not oxytocin, spent 

significantly more time in proximity to the stranger mouse than the empty cage (Fig. 2A). 

However, during second test, only the oxytocin-treated group demonstrated significant social 

preference [within-treatment group post-hoc analyses following significant effect of side, 

F(1,14)=6.66, p=0.0218] (Fig. 2B). In the female groups, mice treated with oxytocin 

demonstrated significant preference for the stranger side at both the 24-hr and 2-wk time 

points [within-treatment group post-hoc analyses following significant effect of side, 

F(1,13)=34.29, p<0.0001] (Fig. 2C, D). In contrast, vehicle-treated female mice failed to 

demonstrate positive sociability with the proximity measure in either test.

3.1.3. Oxytocin effects on entries in the 3-chamber test—Subchronic oxytocin did 

not alter number of entries during the test in the C58/J groups, indicating prosocial effects 

were not due to general changes in activity or exploration (Fig. 3). Number of entries is not 

typically used as an index for social approach; however, it is notable that the male C58/J 

mice treated with oxytocin, but not vehicle, showed significantly more entries into the side 

containing the stranger mouse during the first social test [effect of side, F(1,14)=8.89, 

p=0.0099] (Fig. 3A).

3.2. Acute oxytocin effects in Grin1+/+ and Grin1neo/neo mice

3.2.1. Acute oxytocin effects on hyperactivity in an open field—This study 

determined whether acute oxytocin could reduce the overt hyperactivity previously reported 

in Grin1 knockdown mice (Duncan et al., 2004; Mohn et al., 1998; Moy et al., 2014). Three-

way repeated measures ANOVAs did not reveal significant effects of sex on performance in 

the open field; therefore, data for males and females were combined for analysis. In line 
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with previous findings, the Grin1neo/neo mice had higher levels of activity than wild-type 

mice (Fig. 4A, B). Highly significant main effects of genotype were found for each measure 

[distance traveled, F(1,29)=14.04, p=0.0008; rearing movements, F(1,29)=21.07, p<0.0001; 

and center time, F(1,29)=13.16, p=0.0011 (Fig. 4C)]. In addition, a significant effect of 

treatment was revealed for distance traveled [F(2,58)=3.26, p=0.0456]. Post-hoc 

comparisons confirmed that the higher dose of oxytocin (1.0 mg/kg) led to a significant 

decrease in locomotor activity in the Grin1neo/neo mice. No effects of oxytocin on activity 

were observed in the wild-type group.

3.2.2. Acute oxytocin effects on sensorimotor gating—Previous studies have 

shown that oxytocin and oxytocin receptor agonists can rescue sensorimotor gating deficits 

in rodents (Feifel et al., 2012; Ring et al., 2010). In this study, we determined if acute 

administration of oxytocin could reverse impaired prepulse inhibition in the Grin1neo/neo 

mice. A 3-way repeated measures ANOVA did not indicate any significant effects of sex; 

therefore, data from males and females were combined. As shown in Fig. 4D and E, the 

Grin1neo/neo mice demonstrated deficits in prepulse inhibition at almost every decibel level, 

which were not reversed by acute treatment with oxytocin [main effect of genotype, 

F(1,46)=18.48, p<0.0001; genotype x decibel interaction, F(4,184)=7.59, p<0.0001; no 

significant effects of treatment].

3.3. Prosocial effects of subchronic oxytocin in Grin1neo/neo mice

3.3.1. Oxytocin effects on sociability in male Grin1 mice—Subchronic oxytocin 

(1.0 mg/kg) led to a striking increase in sociability in male Grin1neo/neo mice, but not wild-

type controls (Fig. 5). As shown in Fig. 5A, only the Grin1 knockdown mice treated with 

oxytocin had significant social preference 24 hr following the final injection. In contrast, 

male Grin1+/+ mice had similar positive sociability after either the vehicle or oxytocin 

regimen (Fig. 5B). A repeated measures ANOVA on time spent in each chamber indicated 

significant 2-way interactions between genotype and side [F(1,29)=5.92, p=0.0214], 

treatment and side [F(1,29)=10.04, p=0.0036], and a 3-way interaction between genotype, 

treatment, and side [F(1,29)=7.46, p=0.0106]. A similar 3-way interaction for genotype, 

treatment, and side emerged for the measure of proximity to each cage (Fig. 5C and D) 

[F(1,24)=4.99, p=0.0351; data missing for 5 mice tested before cage-zone tracking 

available].

3.3.2. Lack of oxytocin effects on entries in male Grin1 mice—Subchronic 

oxytocin did not alter number of entries during the test in the Grin1 groups, indicating 

prosocial effects were not due to general changes in activity or exploration (Fig. 5). In the 

Grin1neo/neo mice, oxytocin did not rescue deficits in entry numbers (Fig. 5E) [main effect 

of genotype, F(1,29)=97.02, p<0.0001; and side, F(1,29)=21.46, p<0.0001]. In the Grin1+/+ 

mice, only the oxytocin-treated group showed more entries into the stranger side, versus the 

empty cage side (Fig. 5F) [within-treatment group post-hoc analyses following significant 

effect of side, F(1,14)=9.91, p=0.0071].

3.3.3. Oxytocin (1.0 and 2.0 mg/kg) effects on sociability in female Grin1 mice
—In contrast to the results from the male Grin1 mice, there were no significant effects of 
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genotype or treatment (1.0 mg/kg oxytocin) for measures of sociability in the female groups. 

Therefore, an additional set of female mice was tested with a higher dose of oxytocin, 2.0 

mg/kg, using a subchronic regimen. Measures of proximity are presented in Figure 6A, 

since wild-type female mice (from either treatment group) did not have significant 

sociability by the measure of time spent in each side of the test box. As shown in Figure 6A, 

the Grin1+/+ and Grin1neo/neo mice treated with vehicle or with 1.0 mg/kg oxytocin spent 

similar amounts of time in proximity to the stranger mouse, although preference was only 

significant in the wild-type females [within-treatment group post-hoc analyses following 

significant effect of side, F(1,27)=23.11, p<0.0001; no effect of genotype or treatment; data 

missing for 4 mice tested before cage-zone tracking available]. In contrast, following 

treatment with the higher dose, the female Grin1neo/neo mice demonstrated overt social 

preference and spent significantly more time than the wild-type mice in proximity to the 

stranger mouse [main effect of genotype, F(1,12)=9.51, p=0.0095; effect of side, 

F(1,12)=17.49, p=0.0013, and genotype x side interaction, F(1,12)=6.42, p=0.0262].

3.3.4. Lack of oxytocin effects on entries in female Grin1 mice—As observed in 

the male Grin1 groups, subchronic oxytocin did not alter number of entries during the test in 

the female mice, or reverse marked deficits in the Grin1neo/neo groups (Fig. 6B). Highly 

significant main effects of genotype were observed in the mice treated with 1.0 mg/kg 

oxytocin [F(1,31)=34.16, p<0.0001] and 2.0 mg/kg oxytocin [F(1,12)=25.7, p=0.0003].

3.3.5. Lack of prosocial effects of chronic clozapine or risperidone in 
Grin1neo/neo mice—In a search for therapeutic agents with prosocial efficacy, our research 

group evaluated chronic regimens with two atypical antipsychotics, clozapine and 

risperidone. Overall, neither chronic regimen reversed social deficits in the Grin1neo/neo mice 

(Fig. 7). Separate repeated measures ANOVAs for clozapine and risperidone did not indicate 

any significant effects of treatment or sex; therefore, data were combined for vehicle groups, 

and for males and females. An overall repeated measures ANOVA for time spent in each 

side revealed highly significant effects of genotype [F(1,93)=32.88, p<0.0001] and side 

[F(1,93)=13.20, p=0.0005], but not treatment. Interestingly, neither the wild-type nor 

Grin1neo/neo groups demonstrated significant social preference following the chronic 

antipsychotic regimens (Fig. 7B and C). Further, the chronic clozapine and risperidone 

treatments failed to alleviate the low numbers of entries observed in the Grin1neo/neo groups 

[main effect of genotype, F(1,93)=6.55, p=0.0121; and side, F(1,93)=6.42, p=0.0129; but not 

treatment] (Fig. 7E and F).

3.4. Failure to reverse sensorimotor gating deficits in Grin1neo/neo mice

On the day following the social approach test (48 hr following the final injection with 

oxytocin or vehicle), the Grin1 mice were further evaluated in an acoustic startle test. An 

overall repeated measures ANOVA for prepulse inhibition did not indicate any significant 

effects for sex; therefore, data for male and female mice were combined. As shown in Fig. 
8A and B, the Grin1neo/neo mice had overt deficits in prepulse inhibition, which were not 

rescued by the subchronic oxytocin regimen [main effect of genotype, F(1,64)=31.64, 

p<0.0001; genotype x sound level interaction, F(4,246)= 5.87, p=0.0002; no effects of 

treatment].
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Similarly, chronic treatment with the antipsychotic drugs did not reverse sensorimotor gating 

deficits in the Grin1neo/neo mice. Repeated measures ANOVAs did not indicate any 

significant effects for sex; therefore, data for male and female mice were combined. As 

presented in Fig. 8C and D, the Grin1neo/neo mice in both the vehicle and clozapine groups 

had reduced prepulse inhibition, in comparison to wild-type [main effect of genotype, 

F(1,39)=14.56, p=0.0005; genotype x sound level interaction, F(4,156)=3.06, p=0.0184; no 

effects of treatment]. In the clozapine study, mice were given a re-test on days 36-38 of the 

acclimated chronic regimen; no significant effects of clozapine were observed at this 

additional time point (data not shown). A similar pattern was observed following chronic 

risperidone, i.e. Grin1neo/neo mice in both treatment groups had comparable deficits in 

prepulse inhibition (Fig. 8E, F) [main effect of genotype, F(1,52)=52.18, p<0.0001; 

genotype x sound level interaction, F(4,208)=5.63, p=0.0003; no effects of treatment].

3.5. Failure to reverse deficits in marble-burying by Grin1neo/neo mice

We have previously reported that Grin1 knockdown mice have overt deficits in a marble-

burying task (Moy et al. 2014). In the present study, Grin1 mice were tested for marble-

burying 4-5 days after the final treatment in a subchronic oxytocin regimen. As shown in 

Fig. 9, oxytocin did not rescue deficits in the Grin1neo/neo mice. A 3-way ANOVA indicated 

a highly significant effect of genotype [F(1,50)=1755.56, p<0.0001], with no effects of 

treatment or sex. Similarly, chronic risperidone did not have significant effects in a marble-

burying test, conducted 28-29 days after the first pump implant. Both the vehicle- and 

risperidone- treated Grin1neo/neo mice had profound deficits in marble-burying, in 

comparison to the wild-type mice [main effect of genotype, F(1,52)=1371.76, p<0.0001].

4. Discussion

The present studies demonstrated that oxytocin has prosocial effects in C58/J and Grin1 
knockdown mice, two genetically-divergent mouse models of neurodevelopmental disorders. 

In C58/J, significant sociability was found up to 2 weeks following a subchronic oxytocin 

regimen, supporting the premise that repeated treatment with oxytocin can induce persistent 

alterations in neural circuitry underlying aspects of social perception, motivation, or reward. 

In the Grin1 knockdown model, subchronic oxytocin led to a striking increase in sociability 

in the Grin1neo/neo mice, without altering social approach in the wild-type group. In both 

models, the enhanced social approach was observed in adult mice, indicating that chronic 

social deficits maintained beyond adolescence are not recalcitrant to reversal. Together with 

our previous findings in BALB/cByJ (Teng et al., 2013), these results provide evidence that 

prosocial effects of oxytocin can be observed in genetically- and phenotypically- diverse 

mouse models of autism-relevant behaviors, suggesting oxytocin could have generalized 

efficacy across subtypes of the autism spectrum disorders.

In mice, the IP route of injection has been shown to induce a rapid increase in oxytocin 

levels of amygdala and hippocampus, measured by sequential microdialysates across a 2 

hour period (Neumann et al. 2013). Our studies used a subchronic regimen with four IP 

injections of oxytocin. Sobota and colleagues (2015) found that a similar subchronic 

regimen with oxytocin increases social approach, reduces anxiety-like behavior, and 
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decreases amygdalar activation in adolescent C57BL/6J mice. Other researchers have 

reported that, in adolescent rats, more extended regimens (10 IP injections of oxytocin) can 

lead to persistent increases in social preference and decreases in anxiety-like behavior 

(Bowen et al., 2011; Suraev et al., 2014). More recently, a study using mice with targeted 

disruption of Cntnap2, an ASD candidate gene, found increased sociability following a daily 

oxytocin regimen (from postnatal day 7 to 21) in adolescent knockout mice (Penagarikano et 

al., 2015). The investigators also showed that acute treatment with oxytocin had significant 

effects on social approach, but not on hyperactivity or perseverative responses, in the 

Cntnap2 model. These results are in contrast to the present findings, in which acute oxytocin 

significantly attenuated overt hyperactivity in Grin1 knockdown mice. It is notable that, in 

the C58/J model, we have previously reported that acute oxytocin significantly decreases 

abnormal repetitive behavior at a dose that does not reduce general locomotion (Teng et al., 

2013).

Not all studies have reported positive effects from chronic oxytocin regimens in rodents. 

Bales et al. (2014) did not observe enhanced sociability in BTBR T+Itpr3tf/J mice following 

daily treatment with oxytocin across 30 days. In monogamous prairie voles, a 21-day 

regimen, from weaning age to puberty, led to decreased time spent by male voles in side-to-

side contact with a familiar female partner (Bales et al., 2013). Huang and colleagues (2014) 

found that 7-to-21 day regimens of intranasal oxytocin in C57BL/6J led to decreased 

affiliative behavior, as well as decreased oxytocin receptor binding in brain regions 

implicated in social behavior and reward, including amygdala and nucleus accumbens. A 

similar reduction in oxytocin receptor binding has been reported following 15-day central 

infusion of oxytocin in C57BL/6 (Peters et al., 2014). These latter studies suggest that 

hyperstimulation of normal social circuitry with oxytocin might have detrimental 

consequences in wild-type or control mice. Although Sobota et al. (2015) were able to 

demonstrate prosocial effects of subchronic oxytocin in adolescent C57BL/6J mice, the 

oxytocin treatment did not reverse social deficits induced by the NMDA antagonist 

ketamine, in contrast to our present findings with the NMDA receptor knockdown mice.

The Grin1neo/neo mouse was originally proposed as a model of schizophrenia (Mohn et al., 

1999). Recent clinical studies in subjects with schizophrenia have suggested that oxytocin 

could have therapeutic efficacy for deficits in emotion recognition, attribution bias, and other 

aspects of social cognition, following acute (Davis et al., 2013; Fischer-Shofty et al., 2013; 

Woolley et al., 2014) or chronic (Pedersen et al., 2011) treatment. In addition, 2-to-8 week 

regimens of intranasal oxytocin have been reported to alleviate more general positive and 

negative symptoms in schizophrenia (Feifel et al. 2010; see Pedersen 2014 for review), 

suggesting that oxytocin might have broader antipsychotic-like activity. Work in rodent 

models has demonstrated antipsychotic-like effects of acute oxytocin or oxytocin agonists 

on sensorimotor gating deficits (Feifel et al., 2012; Ring et al., 2010), although Huang et al. 

(2014) did not observe changes in prepulse inhibition following chronic oxytocin in 

C57BL/6J. In the present studies, neither acute nor subchronic oxytocin reversed impaired 

prepulse inhibition in Grin1neo/neo mice, providing evidence that antipsychotic-like oxytocin 

action is dependent upon the particular animal model.
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We also evaluated the effects of chronic antipsychotic treatment on social deficits in the 

Grin1 knockdown model. Currently, only two drugs have FDA approval for treatment of 

ASD, risperidone and aripiprazole. While these drugs have been found to have some benefits 

against irritability in ASD, there is still no standard treatment for impaired social behavior 

(Chadman 2014). Similarly, atypical antipsychotics generally have modest-to-poor efficacy 

against social deficits in schizophrenia (Penn et al., 2009; Roberts et al., 2010). Studies in 

the BTBR T+Itpr3tf/J and Cntnap2−/− mouse models of ASD-like behavior have shown that 

acute risperidone does not reverse sociability deficits (Chadman 2011; Gould et al., 2011; 

Penagarikano et al., 2011; Silverman et al., 2010). Further, Mielnik et al. (2014) did not 

observe increased sociability following acute clozapine in mice with deficient NMDA 

receptor function. However, the question remained whether chronic antipsychotic 

intervention, initiated in early adolescence or young adulthood, could alleviate the severity 

of social impairment. In the present study, we found that chronic clozapine or risperidone 

failed to rescue social deficits in Grin1neo/neo mice. Further, although acute treatment with 

these agents can ameliorate impaired sensorimotor gating in the Grin1 model (Duncan et al., 

2006a,b), chronic exposure did not alter performance in the acoustic startle task in either 

wild-type or knockdown mice.

Overall, these results point to a unique and selective prosocial efficacy for oxytocin. 

Together with our previous findings in BALB/cByJ, we have demonstrated that a subchronic 

oxytocin regimen can lead to persistent enhancement of sociability across three models with 

divergent genotypes and behavioral profiles, suggesting the possibility of generalized 

therapeutic benefits across the autism spectrum disorders, as well as other 

neurodevelopmental disorders characterized by social impairment. Further studies with this 

panel of models could identify common abnormalities in signaling pathways underlying 

deficits in social approach, as well as the mechanism of action for adaptive changes in brain 

with subchronic oxytocin intervention.
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highlights

- Persistent prosocial oxytocin effects were observed in adult C58/J mice.

- Oxytocin increased sociability in C58/J up to 2 weeks following a subchronic 

regimen.

- Subchronic oxytocin reversed overt social deficits in Grin1 knockdown mice.
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Figure 1. Persistent prosocial effects of subchronic oxytocin in adult C58/J mice
Subjects were tested for sociability in a 3-chamber choice task. The subchronic regimen 

consisted of 4 treatments with either vehicle or oxytocin (1.0 mg/kg, IP) across an 8-9 day 

period. Mice were tested at 24 hr, and again at 2 wk, following the final treatment. *p<0.05, 

within-group comparison to empty cage side.
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Figure 2. Effects of subchronic oxytocin on time spent in proximity to a stranger mouse
Testing occurred at 24 hr, and again at 2 wk, following the final treatment. During the 

second test, only the oxytocin treatment groups had significant social preference. *p<0.05, 

within-group comparison to empty cage side.
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Figure 3. Effects of subchronic oxytocin on side-chamber entries by C58/J mice
Overall number of entries was not changed by oxytocin in either male or female mice. 

Testing occurred at 24 hr, and again at 2 wk, following the final treatment. *p<0.05, within-

group comparison to empty cage side.
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Figure 4. Effects of acute oxytocin on hyperactivity and sensorimotor gating deficits in 
Grin1neo/neo mice
A-C) Vehicle (Veh) or oxytocin (0.5 or 1.0 mg/kg, IP) was administered immediately before 

a 1-hr open field test. D, E) Vehicle or oxytocin (1.0 mg/kg, IP) was administered 50 min 

before an acoustic startle test. *p<0.05, comparison to Grin1+/+ mice. #p<0.05, within-

genotype comparison to vehicle (Panel A).
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Figure 5. Prosocial effects of subchronic oxytocin in male Grin1neo/neo mice
Subjects were tested for sociability in a 3-chamber choice task. The subchronic regimen 

consisted of 4 treatments with either vehicle or oxytocin (1.0 mg/kg, IP) across an 8-9 day 

period. Grin1 mice were tested 24 hr following the final treatment. *p<0.05, within-group 

comparison to empty cage side. #p<0.05, comparison to vehicle-treated group (Panel A).
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Figure 6. Increased sociability in female Grin1neo/neo mice following subchronic treatment with 
2.0 mg/kg oxytocin
Subjects were tested for social preference in a 3-chamber choice task. The subchronic 

regimen consisted of 4 treatments with either vehicle, 1.0 mg/kg, or 2.0 mg/kg oxytocin (IP) 

across an 8-9 day period, with testing 24 hr following the final treatment. *p<0.05, within-

group comparison to empty cage side. #p<0.05, comparison to Grin1 wild-type (+/+).
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Figure 7. Lack of significant prosocial effects of chronic clozapine or chronic risperidone in 
Grin1neo/neo mice
Testing occurred following chronic treatment with either clozapine (acclimated 30-day 

regimen; 66 mg/kg/day) or risperidone (acclimated 21-day regimen; 2.0 mg/kg/day). 

*p<0.05, within-genotype comparison to empty cage side (Panel A). #p<0.05, comparison to 

wild-type (+/+) group.
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Figure 8. No effects of subchronic oxytocin, or chronic clozapine or risperidone, on impaired 
sensorimotor gating in Grin1neo/neo mice
A and B) Grin1 wild-type (+/+) and knockdown (neo/neo) mice were tested for prepulse 

inhibition of acoustic startle responses 48 hr after the final treatment in the subchronic 

regimen. C and D) Grin1 mice were tested on day 15-16 of the chronic clozapine regimen 

(66 mg/kg/day). Data were omitted from one male Grin1neo/neo mouse in the clozapine-

treated group with extremely low startle amplitudes. E and F) Grin1 mice were tested 3-6 

days following the chronic risperidone (21 day; 2.0 mg/kg/day) regimen. *p<0.05.
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Figure 9. No effects of subchronic oxytocin or chronic risperidone treatment on marble-burying 
deficits in Grin1neo/neo mice
The marble-burying assay was conducted 4-5 days following the end of the subchronic 

regimen of oxytocin or vehicle, or 7-8 days following a chronic risperidone (21 day; 2.0 

mg/kg/day) regimen. Post-hoc tests were not conducted, due to number of zero scores in the 

Grin1neo/neo groups.
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