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Abstract

In this study we characterized the subcortical afferents for the rat PER areas 35 and 36, POR, and 

the lateral and medial entorhinal areas (LEA and MEA). We analyzed 33 retrograde tract-tracing 

experiments distributed across the five regions. For each experiment, we estimated the total 

numbers, percentages, and densities of labeled cells in 36 subcortical structures and nuclei 

distributed across septum, basal ganglia, claustrum, amygdala, olfactory structures, thalamus, and 

hypothalamus. We found that the complement of subcortical inputs differs across the five regions, 

especially the PER and POR. The PER receives input from the reuniens, suprageniculate, and 

medial geniculate thalamic nuclei as well as the amygdala. Overall, the subcortical inputs to the 

PER are consistent with a role in perception, multimodal processing, and the formation of 

associations that include the motivational significance of individual items and objects. Subcortical 

inputs to the POR were dominated by the dorsal thalamus, particularly the lateral posterior 

nucleus, a region implicated in visuospatial attention. The complement of subcortical inputs to the 

POR is consistent with a role in representing and monitoring the local spatial context. We also 

report that, in addition to the PER, the LEA and the medial band of the MEA also receive strong 

amygdala input. In contrast, subcortical input to the POR and the MEA lateral band includes much 

less amygdala input and is dominated by dorsal thalamic nuclei, particularly nuclei involved in 

spatial information processing. Like the cortical inputs, the patterns of subcortical inputs to these 

regions are consistent both with the view that the dorsal hippocampus is important for spatial 

cognition and the ventral hippocampus is important for affective cognition, and the view that they 

provide considerable functional integration. We conclude that the patterns of subcortical inputs to 

the PER, POR, and the entorhinal LEA and MEA provide further evidence for functional 

differentiation in the medial temporal lobe.
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Introduction

The cortical regions that surround the rodent hippocampus include three 

cytoarchitectonically discrete cortical regions, the perirhinal (PER), the postrhinal (POR), 

and the entorhinal cortices (EC) (Figure 1A). The PER was further subdivided into areas 35 

and 36 (Brodmann, 1909; Burwell, 2001; Krieg, 1946). The entorhinal cortex was 

subdivided into lateral and medial entorhinal areas (LEA and MEA) (Blackstad, 1956; 

Brodmann, 1909). The parahippocampal region comprises the PER, POR, and EC, along 

with the presubiculum and parasubiculum. Together, these regions serve as the gateway for 

unimodal and polymodal associational input directed to the hippocampal formation. 

Available evidence suggests that these regions process information differently en route to the 

hippocampus and that they may have unique, non-mnemonic functions. Importantly, the 

PER, POR, and EC show good homology across mice, rats, monkeys, and humans (Amaral 

et al., 1987; Beaudin et al., 2013; Brodmann, 1909; Burwell et al., 1995; Franko et al., 2014; 

Insausti et al., 1995; Suzuki and Amaral, 2003). Thus, an understanding of the organization 

of subcortical connections should provide insight into how information is processed by these 

regions in the service of memory and other cognitive functions.

We previously investigated the interconnections of the rat PER, POR, and EC (Burwell and 

Amaral, 1998b), the cortical inputs and outputs (Agster and Burwell, 2009; Burwell and 

Amaral, 1998a), and connections with the hippocampal formation (Agster and Burwell, 

2013). These studies revealed a complex network of projections. To briefly summarize, 

neocortical input from ventral temporal association cortex as well as unimodal associational 

input from somatosensory, auditory, and visual areas, targets area 36 of the PER, which then 

projects to area 35. Interestingly, somatosensory, auditory, and visual areas preferentially 

target rostral, mid-rostrocaudal, and caudal area 36, respectively (Burwell, 2001). Long-

range intrinsic connections likely further integrate information along the rostrocaudal axis of 

the PER (Unal et al., 2013). The PER also receives substantial input from the LEA, piriform 

cortex, and insular areas, and these projections preferentially target PER area 35. The POR 

is heavily innervated by visual association and visuospatial areas, including the retrosplenial 

and posterior parietal cortices. The cortical efferents are similarly segregated, with POR 

targeting mainly visual and visuospatial regions and the PER targeting all sensory 

modalities. The PER is most heavily interconnected with the lateral band of the LEA. The 

POR is most heavily interconnected with the lateral band of the MEA, but also with caudal 

LEA (Agster and Burwell, 2013). Interestingly, the POR projects strongly to the caudal 

PER, which receives the most visual input. All parts of the PER project to the POR, but the 

strongest input is from the caudal (visual) PER.

The topographies of the PER and POR projections to the LEA and MEA are important 

because of the organization of the perforant pathway projection to the dentate gyrus of the 

hippocampal formation. The intrinsic connections of the EC are segregated into three bands 

organized from the lateral to the medial extent of the cortex (Figure 1B). Each band includes 

portions of the LEA and the MEA. The bands are organized such that the cells located in a 

single band are highly interconnected, but project minimally outside the band of origin 

(Dolorfo and Amaral, 1998a). Each band projects via the perforant pathway to a different 
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septotemporal component of the hippocampal formation (Dolorfo and Amaral, 1998b). The 

lateral band projects to the septal half of the dentate gyrus, the intermediate band projects to 

the third septotemporal quarter, and the medial band projects to the fourth quarter. This 

connectional topography suggests that the organization of pathways through the PER, POR, 

EC, and the hippocampal formation supports functional differentiation in the hippocampal 

system. Thus, it is also important to know the organization of subcortical input to lateral to 

medial bands of the LEA and the MEA.

Numerous studies have addressed the subcortical connections of the EC (e.g. Alonso and 

Kohler, 1984; Beckstead, 1978; Eid et al., 1996; Wouterlood, 1991). Some studies have 

characterized the PER connections with the amygdala, thalamus, and hypothalamus 

(Kemppainen et al., 2002; Moga et al., 1995; Pikkarainen and Pitkänen, 2001; van Groen et 

al., 1999; Vertes et al., 1995). We also previously reviewed the subcortical connections of 

these regions in summary form (Furtak et al., 2007; Kerr et al., 2007). There are, however, 

no detailed studies of the subcortical connections of the POR and no studies that permit 

comparison of subcortical connections across the PER, POR, and EC.

Here, we investigated the origins of subcortical input to the rat PER areas 35 and 36, POR, 

and the lateral and medial subdivisions of the EC (LEA and MEA). We placed injections of 

retrograde tracers at distributed locations in each region. For each tract tracing experiment, 

the total numbers of labeled cells (and cell densities) were estimated for 36 subcortical 

structures, providing a comprehensive and quantitative assessment of the subcortical inputs 

to PER areas 36 and 35, POR, LEA, and MEA. A parallel study used anterograde tract 

tracers to assess the subcortical efferents of these regions (Agster et al., submitted). Taken 

together, the two studies allow for comparison of the subcortical afferents and efferents 

across subcortical structures and across the target parahippocampal structures.

Materials and Methods

Nomenclature

Target regions—For the PER areas 35 and 36 and the POR, we used boundaries and 

histological criteria proposed by Burwell (2001). In some nomenclatures, PER area 35 is 

called perirhinal cortex and PER area 36 is called ectorhinal cortex (Paxinos and Watson, 

1998; Swanson, 1998). Those sources do not include the POR, but the combined perirhinal 

and ectorhinal cortices caudal to the angular bundle are roughly comparable. For the EC, we 

used the parcellation into LEA and MEA proposed by Brodmann (1909), Lorente de No 

(1933), and Blackstad (1956). The entorhinal cortex has been further subdivided into six 

subareas (Insausti et al., 1997), but for the purposes of this report we will use the LEA/MEA 

parcellation. The borders and nomenclature for the subcortical regions in which we 

quantified numbers of labeled cells are adapted from the atlases of Swanson (1992) and 

Swanson (1998). The subcortical structures are enumerated in Table 1 along with the 

abbreviations used in all figures and the text. A subset of coronal sections illustrating those 

structures is shown in Figure 2. In order to have a manageable number of structures for 

quantification, in some cases it was necessary to combine nuclei and subnuclei.
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Olfactory regions—Following Swanson (1992), the olfactory areas analyzed were the 

anterior olfactory nucleus (AON), the olfactory tubercle (OT), the piriform transition area 

(PTA), the endopiriform nucleus (EP), and the taenia tecta (TT, Table 1). The AON included 

all layers of the dorsal and external parts of the anterior olfactory nucleus. The OT included 

all three layers plus the islands of Calleja. The PTA included the postpiriform transition area 

and the piriform-amygdaloid area. The EP included the dorsal and ventral subnuclei. We 

included the taenia tecta in the olfactory areas as has been previously done on connectional 

and cytoarchitectonic grounds (Gurdjian, 1925; Haberly and Price, 1978).

Claustrum—The claustrum (CLA) is implicated in numerous functions, although the most 

enduring proposal is that the region subserves sensorimotor integration. It has widespread 

connections with neocortical and subcortical structures (Witter et al., 1988). For those 

reasons, we refrained from grouping the region with other subcortical structures and have 

analyzed its connections individually.

Amygdala—The amygdala complex was grouped into five regions — the lateral nucleus 

(LA), the basolateral nucleus (BLA), the basomedial nucleus (BMA), the central nucleus 

(CEA), and the olfactory amygdala (OA). We followed Swanson (1992) and Krettek and 

Price (1978) for most of these groupings. The LA, BLA, and CEA were analyzed as 

individual structures. The BMA region was a composite of the basomedial nucleus, the 

posterior nucleus, and the intercalated nuclei of the amygdala. We included the latter two 

nuclei with the BMA because they appear to belong to the deep nuclei of the amygdala and 

are in closest proximity with the BMA (Canteras et al., 1992). The OA included the 

structures that receive direct input from the olfactory bulb or the accessory olfactory bulb, 

including the nucleus of the lateral olfactory tract, the bed nucleus of the accessory olfactory 

tract, the anterior amygdaloid area, the medial nucleus, and the cortical nucleus (de Olmos et 

al., 1978; Gurdjian, 1925).

Septal nuclei—For the septal afferents, we analyzed four regions, including the lateral 

septal nucleus (LS), the medial septal complex (MS), the posterior septal complex (PS), and 

the bed nucleus of the stria terminalis (BST). Following Swanson (1992), the LS comprised 

the dorsal, intermediate, and ventral parts. The MS comprised the medial septal nucleus and 

the nucleus of the diagonal band. The PS included the septofimbrial nucleus and the 

triangular nucleus of the septum. The BST included all of the areas and nuclei in the anterior 

and posterior divisions as well as the septohippocampal nucleus and the subfornical organ.

Basal ganglia—We grouped structures in the corpus striatum with midbrain structures on 

functional grounds. In the corpus striatum, we analyzed the caudate putamen (CP), the 

nucleus accumbens and the fundus of the striatum (ACB), the lateral and medial segments of 

the globus pallidus (GP), and the substantia innominata including the magnocellular preoptic 

nucleus (SI) (Swanson, 1992). We included the dopaminergic cell groups in the substantia 

nigra pars compacta and pars reticulata with the ventral tegmental area (SN-VTA).

Dorsal thalamus—In general, we used Swanson (1992) and Jones (1985) in the 

delineation of borders for the quantitative analyses. The epithalamus (EPI) included the 

lateral and medial habenula. For the dorsal thalamus, except for the geniculate regions, we 
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used Swanson’s groupings. We quantified labeled cells in the midline group (DTHmi), the 

anterior group (DTHan), the medial group (DTHme), the lateral group (DTHla), and the 

ventral group (DTHve). DTHmi included the paraventricular nucleus, the parataenial 

nucleus, and the nucleus reuniens. DTHan included the anteroventral, anteromedial, 

anterodorsal, interanteromedial, interanterodorsal, and lateral dorsal nuclei of the thalamus. 

DTHme included the mediodorsal and submedial thalamic nuclei and the perireuniens 

nucleus. DTHla included the suprageniculate nucleus and the lateral posterior nucleus, the 

posterior limiting nucleus, and the posterior complex of the thalamus. The DTHve included 

the ventral anterior-lateral complex, the ventral medial nucleus and the ventral posterior 

complex of the dorsal thalamus. Finally, the intralaminar nucleus of the dorsal thalamus 

(ILM) was analyzed as a single structure.

Ventrolateral thalamus—The geniculate regions were divided into the medial geniculate 

complex (MG), which is part of the dorsal geniculate group, and the lateral geniculate 

complex (LG). LG included the dorsal and ventral parts of the lateral geniculate complex 

and the intergeniculate leaflet. Ventrolateral thalamic structures quantified included the 

reticular nucleus (RT) and the zona incerta (ZI). We grouped the remaining ventrolateral 

thalamic structures (VLTH). The VLTH included the subthalamic nucleus, the perifascicular 

nucleus, and the peripeduncular nucleus.

Hypothalamus—We analyzed the periventricular zone (PVZ), the medial zone excluding 

the mammillary body (MEZ), the collected structures of the mammillary body (MBO), and 

the lateral zone (LZ) following Swanson (1992). The PVZ included the paraventricular 

nucleus of the hypothalamus as well as the anteroventral, anterior, intermediate, and 

posterior paraventricular nuclei of the hypothalamus. Also included were the vascular organ 

of the lamina terminalis, the suprachiasmatic and median preoptic nuclei, the preoptic 

paraventricular nucleus, and the arcuate nucleus of the hypothalamus. The MBO included 

the dorsal, medial, and lateral mammillary nuclei, the tuberomammillary nucleus, and the 

supramammillary nucleus. The MBO is part of the medial zone of the hypothalamus, but we 

parceled it out for analysis because of its putative role in memory. The remaining medial 

structures formed the MEZ and included the medial, anterodorsal, anteroventral, and 

posterodorsal preoptic nuclei, the parastrial nucleus, the suprachismatic nucleus, the 

retrochiasmatic area, the subparaventriclar zone, the anterior hypothalamic area, and the 

tuberal area of the hypothalamus. The LZ included the lateral preoptic area and the lateral 

hypothalamic area.

Subjects

Subjects were 22, previously untreated, male adult Sprague-Dawley rats (Harlan 

Laboratories, Houston, TX or Charles Rivers Laboratories) weighing between 300 and 400 

g. Subjects were housed individually or in pairs under standard 12h light/12h dark 

conditions with ad libitum access to food and water. Following surgery, subjects were 

housed individually. All methods involving the use of live animals conformed to NIH 

guidelines and were approved by the appropriate animal care and used committees at Salk 

Institute for Biological Studies, the State University of New York at Stony Brook, and the 

Brown University Institutional Animal Care and Use Committees. Data from these subjects 
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were used in analyses of the cortical afferents, hippocampal connections, and 

interconnections of the PER, POR, and EC (Agster and Burwell, 2013; Burwell and Amaral, 

1998a; Burwell and Amaral, 1998b).

Surgery

Surgical procedures were as previously reported (Burwell and Amaral, 1998a). Briefly, 

subjects were anesthetized by one of two methods, either intraperitoneal injection of sodium 

pentobarbital (Nembutal®, Abbott Laboratories, North Chicago, IL, 50 mg/kg) or with 

halothane gas. Subjects were secured in a Kopf stereotaxic apparatus (Tujunga, CA) in the 

flat skull position, a craniotomy was drilled above the intended injection site, and a small 

incision was made in the dura for pressure injection of retrograde dyes via micropipette. The 

retrograde tracers used (Dr. Illing GmbH and Co., Gross Umstadt, Germany) were either 

Fast Blue (FB, 150 nL, 3% in distilled H2O) or Diamidino Yellow (DY, 200 nL, 2% in 

distilled H2O). One subject, 108FG, received a single injection of 100 nL of a 2% solution 

of Fluoro-Gold (FG, Fluorochrome, Inc., Englewood, CO) in 0,9% NaCl (Schmued and 

Fallon, 1986). Injections were made in the target regions (PER, POR, or EC) using 

stereotaxic coordinates (Paxinos and Watson, 1986). The tracers were pressure injected 

through glass micropipettes pulled from capillary tubing (Corning, Inc. Corning, NY) with 

outer diameter of 800 μm and inner diameter of 250 μm. Micropipette tip diameter was 60–

90 μm. The tracers were pressure injected at the rate of 30 nL/min. The micropipette was 

raised 100 μm immediately following the injection. After a 10 min stabilization period, it 

was slowly raised at a rate of 500 μm/min until totally removed, as previously described 

(Burwell and Amaral, 1998b). After one or two injections were completed, the wound was 

sutured. Subjects were kept warm and under observation for 1–2 hours or until awake, and 

then were transferred back to the animal colony for a 7–9 day survival period.

Tissue processing

Subjects were deeply anesthetized with a 35% solution of chloral hydrate and transcardially 

perfused using a pH-shift protocol (Burwell and Amaral, 1998a). Solutions were perfused at 

a flow rate of 35–40 ml/min. A two min perfusion of room temperature saline was followed 

by 10 min of 4% paraformaldehyde in 0.1 M sodium acetate buffer (pH 6.5 at 4°C) and 15 

min of 4% paraformaldehyde in 0.1 M sodium borate buffer (pH 9.5 at 4°C). Ice was packed 

around the subject’s head after the saline step to cool the brain during perfusion. Brains were 

removed from the skull, postfixed for 6 h in the second paraformaldehyde solution at 4°C, 

and cryoprotected for 24 h in 20% glycerol in 0.02 M potassium phosphate buffered saline 

(KPBS, pH 7.4 at 4°C). The brains were then frozen, and immediately sectioned or stored at 

−70°C.

The brain was cut into five series of 30 μm sections beginning at the rostral limit of 

prefrontal cortex and extending through the caudal pole of the neocortex. One 1:5 series was 

collected into 0.1 M phosphate buffer (PB), and later mounted and stained for Nissl material. 

A second series was also collected into 0.1 M PB, and immediately used for retrograde 

tracer procedures explained below. The remaining three series were used for other 

procedures or stored at −70°C in cryoprotectant solution (Burwell and Amaral, 1998b).
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Sections analyzed for fluorescent retrogradely-labeled cells were mounted onto gelatin-

coated slides after sectioning. The mounted tissue was dried at room temperature for 2–4 h 

in a vacuum desiccator, dehydrated in 100% ethanol (2 × 2 min), cleared in xylene (3 × 2 

min), and coverslipped with DPX Mountant (Gallard-Schlessinger, Plainview, NY). This 

technique improves visibility and prevents fading of fluorescent dyes indefinitely, with 

moderate increases in background fluorescence.

Data analysis

Thirty-three labeled cells tracer injections in the PER, POR and EC were selected for 

analysis from a library of 72 cases (Table 2). These cases were previously used to describe 

the cortical, hippocampal, and parahippocampal connections of the PER, POR and EC 

(Agster and Burwell, 2013; Burwell and Amaral, 1998a; Burwell and Amaral, 1998b).

Regional borders for the subcortical areas designated in Table 1 were determined based on 

Swanson (1992) and Swanson (1998). See detailed discussion under Nomenclature. 

Contours were drawn and fluorescently labeled cells were plotted for a 1:10 series of 30 μm 

sections throughout the selected subcortical regions ipsilateral to the injection site. A range 

of 42 to 48 coronal sections were quantified for each experiment. Labeled cells were plotted 

at a total magnification of 100× (10× objective X 10× eyepiece) using a Nikon Optiphot-2 or 

a Nikon E600 coupled to a computerized data collection system (Neurolucida, 

MicroBrightfield, Inc., Burlington, VT). For each section, the area of each contour and the 

total number of cells within the contour were quantified by Neurolucida and exported to 

Excel. Total cell counts within the area contours were quantified for every section in the 1:10 

series. Stereological methods were not used. Total numbers of labeled cells were estimated 

by multiplying the number of cells plotted in the 1:10 series by 10. Cell numbers were then 

normalized to the mean total number of cells labeled in cortical, subcortical, and 

hippocampus regions for all injection sites. The estimated volume of each afferent region 

was estimated by summing the areas of the contours and multiplying by the 300-μm step 

size between sections along the z-axis. It is possible these estimates could be biased by 

increased probability of double counting along the z-axis as well as by loss of caps due to 

the difficulty in identifying partial cell bodies at the margin of a coronal section. These 

biases are not likely to significantly impact the interpretation of results for two reasons: first, 

the two types of biases are in opposite directions; and second, the estimates of cell number 

and density in all subcortical regions were subject to the same bias.

Primary analysis provided estimated total numbers of cells labeled in each region for each 

case. We further analyzed these data by two complementary methods. These secondary 

analyses comprised the density of labeled cells in the subcortical afferent regions, and the 

percentage of total input to the target regions. Densities of labeled cells were calculated as 

the total normalized number of cells in each region divided by the volume of the region. We 

also calculated the percent of input arising from the afferent regions to a particular target 

structure. The percentages were based on the total numbers of labeled cells observed in each 

subcortical afferent region.

The density and percentage measures provide qualitatively different views of the impact of 

subcortical afferents to the PER, POR, and EC. The density of labeled cells allows assessing 
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whether a particular subcortical region projects more strongly to one target region than 

another. The percentage measure is more useful for understanding the pattern of inputs to a 

particular target region. In other words, does a particular target region receive more input 

from one subcortical structure than another. The percentage measure also allows comparison 

of the overall pattern of subcortical input across target regions. Thus, both measures can be 

used the assess pattern and strength of projections. The density measure is more useful for 

assessing the strength and pattern of output from subcortical afferent regions, whereas the 

percentage measure is more useful for examining the relative strength and pattern of input to 

target regions. The contribution and use of these two measures is elaborated in the 

discussion.

Finally, we used correlation analysis to quantify the similarities of subcortical afferentation 

of the target regions. A pairwise Pearson correlation analysis of the percentage measure was 

performed across all pairs of the five parahippocampal target structures. We chose the 

percentage measure because that measure represents the patterns of subcortical afferentation 

and is not biased by either the volume of subcortical afferent regions or the overall size of 

the projection. Statistical significance was set at p < 0.05.

Results

Description of injection sites

Thirty-three injections of labeled cells dyes were made in various locations of the PER, POR 

and EC (Figure 1C and Table 2). The area of the injection site was defined as the dye core 

plus the region of heavy necrosis immediately surrounding the dye core. Figure 2 shows 

color-coded boundaries of the quantified regions on coronal views (see abbreviations in 

Table 1). Figures 3 through 7 show the injection site and labeled cells in nine coronal 

sections for representative labeled cells dye injections located in areas 35, 36, POR, LEA 

and MEA. Although injection size varied, as previously reported (Burwell and Amaral, 

1998a), there were no significant differences among the five target regions in mean volume 

of the injection sites (p > 0.43). Figure 8 shows a summary of the analysis for the composite 

subcortical areas, to facilitate comparison between regions.

Percentage of subcortical input

Table 3 shows the percentage of total input to the parahippocampal target regions arising 

from each subcortical region. The normalized mean total number of subcortical cells labeled 

for each target region is shown at the bottom of Table 3. Thus, the mean number of cells 

labeled in each subcortical region can be calculated from the table.

Perirhinal cortex area 35—The PER area 35 shows strong subcortical connectivity as 

judged by total normalized labeled cells of 69,400 (Table 3 bottom, and Figure 8B). Based 

on percentages of labeled cells, the principal subcortical afferents to area 35 originate in the 

olfactory regions, accounting for one third of all subcortical inputs (33%). This is followed 

closely by the claustrum (21%), the amygdala (20%), and the thalamus (20%, Table 3, 

Figure 8A). Most of the olfactory input arises from the EP (20%) and PTA (11%), 
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subcortical structures associated with piriform regions (Figure 3F,G). Both the EP and the 

PTA project to all rostro-caudal levels of area 35.

All subdivisions of the amygdala project to area 35, and all regions, particularly the LA 

project preferentially to caudal area 35. The input from LA, BLA, and BMA, account for 

approximately 7%, 4%, and 5% respectively. Consistent with the olfactory inputs, the OA 

also provides 5% of the total subcortical input to area 35.

The claustrum (Figure 3D, E) projects strongly to all rostro-caudal regions. Area 35 receives 

moderate projections from the dorsal thalamus that mainly arise from DTHmi, DTHla 

(Figure 3G), and the ILM. The projection from DTHmi originates primarily from the 

nucleus reuniens, and the input from DTHla is observed from all nuclei in this subdivision 

except for the lateral posterior nucleus. The MG, or the auditory thalamus, provides a strong 

input that targets the mid-rostrocaudal portion of area 35 (Figure 1C, case 112DY, and 

Figure 3H). The remaining nuclei of the ventrolateral thalamus along with the septal nuclei, 

the basal ganglia, and the hypothalamus provide few afferents to area 35 (Table 3).

Perirhinal cortex area 36—For PER area 36 labeled cells transport resulted in 

approximately 47,900 labeled cells, more than the POR, but less than the other areas (Table 

3 bottom, and Figure 8B). Based on percentages of labeled cells, inputs to area 36 are 

dominated by the amygdala and the thalamus (approximately 40% each, Table 3, Figure 

8A). Of the amygdala inputs, the LA contributes most heavily and these projections 

terminate in the mid-rostrocaudal and caudal portions of area 36. The representative case 

shown in Figure 4F, 98DY, provides a good example as the injection site is located in mid-

rostrocaudal area 36 (Figure 1C).

Similarly to the amygdala, the thalamic nuclei contribute strong afferent projections to area 

36 (Table 3). The largest projection from the dorsal thalamus to area 36 originates in DTHla 

(16%, Figure 4G) and terminates more strongly in the mid-rostrocaudal level. This 

projection arises most strongly from the suprageniculate nucleus. The next strongest 

projection arises in the MG (Figure 4H) and targets both the rostral and mid-rostrocaudal 

parts of area 36. The VLTH provides a significant, but more modest input, but cells were 

observed only in the perifascicular nucleus, and the peripeduncular nucleus (no cells were 

found in the subthalamic nuclei). Finally, the claustrum and olfactory areas, particularly the 

PTA, contribute moderate input to area 36. Little or no input to area 36 arises in the septal 

nuclei, the basal ganglia or the hypothalamus (Table 3).

Postrhinal cortex—The POR receives a smaller complement of subcortical input, judging 

by the number of labeled cells, 25,500, approximately half or less than that of the other 

regions (Table 3 bottom, and Figure 8B). This input is dominated by projections from the 

dorsal thalamus (64%, Figure 8A), with the DTHla representing a striking proportion of the 

total subcortical innervation (35%, Figure 5F, G). The labeled cells in the DTHla were 

confined entirely to one thalamic nucleus, the lateral posterior nucleus. The strongest 

labeling resulted from injection sites located more caudally in the POR. This projection 

accounts for approximately half of the input from dorsal thalamus to the POR. Although the 

thalamic input is dominated by the lateral posterior nucleus, the DTHan, ILM and DTHmi 
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also provide strong afferent innervation to the POR. Input from DTHan was primarily 

localized to the anterodorsal, anteromedial and lateral dorsal nuclei, the ILM projection 

originated particularly from the rhomboid nucleus, and in the DTHmi most labeled cells 

were found in the nucleus reuniens.

The second largest subcortical input to the POR after the lateral posterior nucleus arises in 

the claustrum (Figure 5B, C). This projection accounts for approximately one-fifth of the 

total subcortical input in percentages of labeled cells (Table 3). These projections terminate 

preferentially in the rostral and mid-rostrocaudal levels of the POR.

More modest numbers of labeled cells were observed in the ventrolateral thalamus, 

hypothalamus, amygdala and septal regions. The majority of ventrolateral thalamus input to 

POR is provided by the ZI and VLTH. Input from the hypothalamus originated primarily in 

MBO and LZ (Table 3). From the amygdala, the LA and BLA provide the strongest inputs, 

though this input is weak compared to PER afferents. The modest input from the septal 

region arises almost entirely from the MS, and inspection of the individual cases indicates 

that this projection arises in the diagonal band of Broca. Finally, the olfactory regions and 

the basal ganglia provide minimal input to the POR.

Lateral entorhinal area—Retrograde tract tracer injections into the LEA resulted in a 

normalized total of approximately 89,800 labeled cells (Table 3 bottom, and Figure 8B). The 

highest proportion of labeled cells originated in olfactory areas, accounting for more than 

one-third of the total input from subcortical regions (Table 3, and Figure 8A). Within the 

olfactory region, afferents arise predominately from EP and PTA (Table 3, Figure 6E–H). 

These areas project more strongly to the intermediate and medial bands, but the lateral band 

is also strongly targeted. The LEA also receives a large percentage of input from the 

claustrum (20%, Figure 6C, D), with little bias for each of the cortical bands, and the 

amygdala (25%), particularly to the intermediate and medial bands. From the amygdala, OA, 

LA and BMA contribute the most input to the LEA (Figure 6E, F). Afferents from the dorsal 

thalamus (12%), particularly DTHmi (9%), also contribute to the input to all bands of the 

LEA (Table 3). Labeled cells were observed in all subregions of the DTHmi, but densities 

were higher in the nucleus reuniens. Other smaller but noteworthy projections arrive to the 

LEA from the septal nuclei (mainly MS), and the hypothalamus (mainly MBO). Afferents 

arising from the basal ganglia and ventrolateral thalamic nuclei provide minimal input to the 

LEA.

Medial entorhinal area—The MEA receives strong subcortical input, roughly 

comparable to that of area 35, with 63,800 cells (Table 3 bottom, and Figure 8B). Injections 

in the MEA resulted in strong labeling in the olfactory nuclei (23%), the amygdala (27%), 

and the dorsal thalamus (22%, Table 3, Fig 8A). Olfactory input is dominated by EP 

projections terminating mainly in the intermediate and medial bands of the MEA (Figure 

7F). From the amygdala nuclei, OA accounts for the largest percentage of labeled cells 

(Table 3, Figure 7F). These projections terminate mostly in the medial band of the MEA. 

From the dorsal thalamus, the vast majority of labeled cells was observed in DTHmi, more 

specifically in the nucleus reuniens (Figure 7D) and particularly targeted the medial band. 

The claustrum also provides strong input to the MEA (17%, Figure 7D) and this projection 
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is fairly uniform across MEA bands. MEA injections also result in labeled cells in the 

hypothalamus, especially if the injection is in the lateral band of MEA. The main 

contributors to the hypothalamic input to the MEA are MBO and LZ (Table 3). The septal 

nuclei contribute a relatively small percent of total subcortical input, with the majority of 

this input originating in MS. The MEA also receives a small percent of input from the basal 

ganglia and ventrolateral thalamus.

Similarity of projections across parahippocampal structures—To compare the 

similarity of projections among the five parahippocampal structures, a pairwise Pearson 

correlation analysis was performed using the percentage measure from Table 3. The pattern 

of inputs to LEA, MEA and PER area 35 were highly intercorrelated with Pearson r-values 

ranging from 0.842–0.943 (p < 0.001). In contrast, the intercorrelations among the POR, 

PER area 35 and PER area 36 were weaker, though still significant, with Pearson r-values 

ranging from 0.350 to 0.415 (p < 0.036). Finally, the comparisons of input pattern between 

POR and EC (both LEA and MEA), and between PER area 36 and EC (LEA and MEA) did 

not show statistically significant correlations.

Average density of labeled cells

Table 4 shows the average density of labeling, that is, the total normalized number of cells in 

each region divided by the volume of the region. This measure allows for comparisons of the 

strength of the projection from one specific subcortical nucleus to the different target 

regions.

Olfactory areas—Analysis of the density of labeled cells indicates that the subcortical 

olfactory nuclei project more strongly to the LEA and PER area 35 than to the other area of 

PER, POR and MEA (Table 4, and Figure 8C). The specific nuclei that project to both LEA 

and area 35 are also similar, with the PTA and EP showing the strongest density for both 

regions (Figure 3F, G and Figure 6E–H). Injections of labeled cells tracer in the MEA also 

leads high density of cells in the EP. The POR and PER area 36 receive relatively weak 

projections from the olfactory nuclei.

Claustrum—The claustrum shows high density of labeled cells following injections in all 

target regions (Table 4 and Figure 8C, blue bars). The strongest projections target area 35, 

LEA and MEA (Figure 3D, E; Figure 6C, D; Figure 7D).

Amygdala—The amygdala projects strongly to PER areas 35 and 36 and both the LEA and 

MEA (Table 4 and Figure 8C, green bars). The projection from the LA to area 36 is 

responsible for the highest density of labeling observed in this study (Figure 4F). The LA 

and the BLA project more strongly to areas 35 and 36, whereas the BMA and OA project 

more strongly to LEA and MEA (Figure 6E and Figure 7F).

Septal nuclei—The density of cells in the septal nuclei following injections of labeled 

cells tracer in the target regions was, in general, modest (Table 4 and Figure 8C). For 

injection sites in each region, the strongest contributor of projections is the MS. This region 
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sends moderately strong projections to LEA and MEA, intermediate projections to PER area 

35 and POR, and weaker projections to PER area 36.

Although the septal input is relatively modest when assessed in the framework of the entire 

complement of subcortical inputs, these inputs are functionally important for reasons that are 

described elsewhere. Although we did not address cholinergic and noncholinergic origin of 

these inputs, these data are available. Briefly, the proportion of basal forebrain projection 

cells that are cholinergic is higher for the perirhinal and postrhinal cortices (26–48%) than 

for the entorhinal cortex (13–30%) (Kondo and Zaborszky, 2016).

Basal ganglia—The basal ganglia, overall, show low density of cell labeling following 

injections of labeled cells tracers into all regions analyzed here (Table 4 and Figure 8C). 

Among these modest projections, the strongest are observed from CP and SN-VTA to PER 

area 36, and from SI to PER area 35 (Table 4).

Dorsal thalamus—The dorsal thalamus, taken as a whole, seems to evenly target all five 

parahippocampal structures (Figure 8C). Further analysis of the subnuclei, however, shows 

very specific patterns of projections (Table 4). The DTHla, in particular, shows high density 

of cells following injections to PER area 35, PER area 36, and to POR, but their origin is 

different. The lateral posterior nucleus strongly projects to POR, but does not project to 

either PER region (Figure 3G, Figure 4G and Figure 5F, G). The DTHmi, on the other hand, 

projects to all regions, but more strongly to LEA and MEA, consistent with earlier reports 

(Berendse and Groenewegen, 1991). These projections originate mainly in the nucleus 

reuniens for all targets (see, for example, Figure 7D). Other projections of note from the 

dorsal thalamus include a strong projection from DTHan to MEA, and a strong projection 

from ILM to POR.

Ventrolateral thalamus—The ventrolateral thalamus, with a few exceptions shows weak 

connectivity with the five parahippocampal structures (Table 4 and Figure 8C). Those 

exceptions are notable for the high density of cells observed. The MG (the auditory 

thalamus) projects strongly to both PER area 35 and PER area 36 (Figure 3H and Figure 

4H). Additionally, the VLTH projects to both PER areas, but more strongly to area 36.

Hypothalamus—Overall, the hypothalamic projections to the target regions are weak 

(Table 4 and Figure 8C). The projection from MBO to both LEA and MEA is the strongest 

observed, but nonetheless in the intermediate range when compared to the overall analysis.

Dentate gyrus-projecting bands of the entorhinal cortex

For the LEA, there were three injections in the lateral band, four in the intermediate band, 

and only one in the medial band. For the MEA, there were three injections in the lateral 

band, two in the intermediate band, and again only one in the medial band. The injections in 

the LEA and MEA medial bands primarily included deep layers. Although there were 

different numbers of injection sites in each band, taken together the cases represented input 

from both deep and superficial layers.
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All three bands in LEA received substantial input from the claustrum with injections in all 

bands resulting in high densities of labeled cells (blue bars in Figure 9B, top). The percent 

input arising from amygdala nuclei (green sections in Figure 9A, top) and densities of 

labeled cells in those nuclei (green bars in Figure 9B, top) increased from the lateral to 

intermediate to medial bands of the LEA. The increase was observed for all amygdala 

structures that project strongly to the LEA, i.e. all structures except the CEA. The olfactory 

input also shows a tendency to increase along the lateral to medial bands of the LEA (orange 

bars in Figure 9B, top), especially for the EP. The projections from dorsal thalamic 

structures are roughly equally strong across bands (violet bars in Figure 9B, top).

For the MEA, we have noted that there are overall fewer labeled cells arising from 

subcortical regions. This is especially the case for the lateral MEA in which only the 

claustrum shows high densities of labeled cells (Figure 9B, bottom). All three MEA bands 

receive strong input from the claustrum (blue bars in Figure 9B, bottom), though not as 

strong as the LEA (blue bars in Figure 9B, top). Like the LEA, the percent input arising 

from amygdala nuclei (green sections in Figure 9A, bottom) and densities of labeled cells in 

those nuclei (green bars in Figure 9B, bottom) increased from the lateral to intermediate to 

medial bands of the MEA. With the exception of the MEA lateral band, the densities of 

labeled cells are similar for the LEA and MEA bands. Again, the increase was observed for 

all amygdala structures except the CEA. The olfactory input also shows a tendency to 

increase along the lateral to medial bands of the MEA (orange bars, Figure 9B, bottom). 

Like the LEA, this increase is especially notable for the EP. All three bands receive input 

from the dorsal thalamus (violet bars in Figure 9B, bottom) and the input to the intermediate 

and medial MEA bands is stronger than that to the LEA.

Discussion

We examined the subcortical afferents to the PER, POR, and EC using quantitative labeled 

cells tract tracing methods. Prior studies have described specific point-to-point connections 

of individual subcortical regions for one or more of the five target areas, but many of the 

projections described in this and the accompanying study (Agster et al., submitted), 

particularly those pertaining to the POR, have not been previously described. Moreover, our 

quantitative, multi-target approach facilitates comparison of strength and patterns of 

subcortical projections across the target regions.

Our data analysis procedures quantified subcortical afferents in two ways, providing 

different insights into our findings. The percentage measure was based on numbers of 

labeled cells, regardless of the volume of the afferent region. Thus, the percentage measure 

is suitable for assessing the pattern of input to a particular target region and for comparing 

the patterns of input across target regions (Table 3 and Figure 10). The density measure does 

include the volume of the subcortical region in that the total number of labeled cells in the 

structure is divided by its volume. This measure is suitable for comparing the size of the 

output from a single afferent region across target regions (Table 4 and Figure 11).

One asset of our study is that we normalized the data to control for differences that might 

result from the size of injection sites or the efficacy of transport. Because we plotted labeled 
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cells throughout cortical, subcortical, and hippocampal regions for each of the cases, we 

were able to normalize our data on the assumption that injection sites of similar size and 

efficacy would result in comparable numbers of labeled cells. This approach strengthens the 

comparison of inputs across different areas in the parahippocampal region. A caveat, of 

course, is that even an accurate estimate of numbers of labeled cells labeled neurons in a 

particular subcortical region does not account for differences in the strength of synaptic 

contacts. These quantitative data, however, do provide important background information 

that can inform studies of synaptic connectivity for the afferent and target regions analyzed. 

Another caveat is that our analyses are based on the assumption that the input to the group of 

injection sites selected for analysis is representative of the complement of subcortical inputs 

to the entire target region. Although unlikely, we may have missed a subcortical projection 

with a highly restricted terminal field in one of our target regions. To guard against this 

occurrence we analyzed a well-distributed set of injection sites in each target region.

Subcortical influence over hippocampal input pathways

According to a prominent view of medial temporal lobe function, neocortical input is 

functionally organized into two largely separate information streams: the PER and LEA 

process nonspatial information about objects and individual items, whereas the POR and 

MEA process information about space and contexts. In addition, the cortical afferents of the 

PER and LEA are more similar, whereas the cortical afferents of the POR and MEA are 

more similar (Burwell and Amaral, 1998a). These two information streams are combined in 

the hippocampus to support associative learning and episodic memory (Burwell, 2000; 

Eichenbaum, 2000; Zola-Morgan et al., 1991). An interesting question, then, is how 

subcortical input might influence these information pathways. Our quantification of 

subcortical inputs allowed us to address this question by conducting pairwise correlational 

analyses across the five target regions for the percentages of inputs arising from each of the 

36 afferent regions. Interestingly the LEA, MEA, and PER area 35 were significantly and 

highly intercorrelated. These three regions are similar in that they each receive substantial 

input from olfactory regions and the amygdala, whereas area 36 receives much less olfactory 

input and the POR receives little olfactory or amygdala input (Figure 8A). Interestingly, in 

the rat, area 35 projects to entorhinal cortex more strongly than area 36, whereas area 36 

largely projects more strongly to most neocortical regions than area 35 (Agster and Burwell, 

2009; Burwell and Amaral, 1998b). This finding suggests that subcortical olfactory and 

amygdala input strongly influence cortical input to the hippocampus via area 35, the LEA, 

and the MEA.

Consideration of the EC dentate-gyrus projecting bands reveals a somewhat different 

picture. Subcortical input to the LEA and the MEA is quite different at the level of the 

lateral band, which projects to the septal half of the hippocampal formation (Figure 9). 

Injections in the lateral band of the MEA resulted in a pattern of labeling dominated by the 

dorsal thalamus with much smaller projections arising from olfactory regions and the 

amygdala. The olfactory input is strong to all bands of the LEA, but only to the intermediate 

and medial bands of the MEA. The amygdala input is strong to the intermediate band and 

strongest to the medial band. These bands project to the temporal half of the hippocampus. 

The pattern of subcortical input to the LEA and MEA could be construed as consistent with 
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a prominent view that dorsal hippocampus is more involved in spatial memory, and the 

ventral hippocampus is more involved in emotional memory. However, it could also be 

argued that the complexity of the subcortical connections combined with the extensive 

longitudinal connections of the hippocampal formation affords considerable functional 

integration.

Parahippocampal connectivity with the claustrum

The robust input from the claustrum to the PER, POR, and EC also deserves discussion. Not 

much is known about the function of the claustrum but its widespread reciprocal connections 

with sensory and associational regions of neocortex have prompted suggestions that it 

participates in sensory integration, perceptual binding, attentional modulation, and 

consciousness (Crick and Koch, 2005; Goll et al., 2015). The claustrum provides a large 

proportion of input, about 20%, to PER area 35, POR, and the LEA, about 16% to the MEA, 

and over 7% to PER area 36. Based on densities of labeled cells, the claustral output is very 

strong to area 35, LEA, and MEA and less strong to PER area 36 and POR. We should note, 

however, that injections in all five regions resulted in relatively high densities of labeled cells 

in the claustrum. Similarly in the monkey, the claustrum provides a very strong input to all 

temporal lobe structures including all parts of the entorhinal cortex (Insausti et al., 1987; 

Mufson and Mesulam, 1982; Pearson et al., 1982). In the companion paper (Agster et al., 

submitted) we report that the PER areas 35 and 36 and the LEA project more strongly to the 

claustrum than do the POR and the MEA. Whereas the function of the claustrum remains 

unclear, it is in good position to modulate corticocortical connectivity as well as information 

flow to and from the hippocampal formation.

Subcortical influence over affective functions

The strongest amygdala projection we observed is from the LA to PER area 36, but 

projections to area 35, LEA, and the MEA medial band are also strong. These projections 

are largely reciprocated (Agster et al., submitted). Other studies have assessed the 

connections of the PER, POR, or EC with the amygdala in rat (Amaral and Price, 1984; 

Deacon et al., 1983; Majak and Pitkanen, 2003; Pikkarainen and Pitkänen, 2001; Pitkänen et 

al., 2000; Room and Groenewegen, 1986), cat (Room and Groenewegen, 1986), and monkey 

(Amaral and Price, 1984; Insausti et al., 1987), but our studies are the only ones that 

assessed the efferents and afferents of all three regions and their subdivisions.

The strong amygdala input to the PER is consistent with the view that the PER not only 

processes information about items and their features, but it also encodes the motivational 

significance of cues. For example, damage to the PER impairs learning of associations 

between cues and reward schedules (Murray and Richmond, 2001). PER neurons signal 

associative relationships between cues and reward schedules (Liu and Richmond, 2000), and 

they signal outcomes associated with cues (Eradath et al., 2015). A related line of research 

shows that PER connections with the amygdala and thalamus are important for associating 

cues with negative outcomes. As we show here, the MG, also known as the auditory 

thalamus, provides strong input to the PER. An earlier report described a projection from the 

suprageniculate nucleus, but not the MG (Kimura et al., 2003). We also know that the PER 

projects strongly back to the amygdala (Agster et al., submitted). Romanski and LeDoux 
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(1992) showed that lesions of the thalamo-amygdala or thalamo-perirhinal-amygdala 

pathways alone did not impair auditory fear conditioning, but combined lesions of both 

pathways do impair this behavior. One possibility suggested by the authors is that the 

thalamo-amygdala pathway provides a fast, but crude representation of auditory information 

to the amygdala, whereas the thalamo-perirhinal-amygdala pathway provides a slower signal 

but the representation is more elaborate. This finding is consistent with studies showing that 

the PER is necessary for associating fear with complex, but not simple, auditory stimuli 

(Kholodar-Smith et al., 2008).

Previous electrophysiological and anatomical studies of the projections from the amygdala 

to the EC described a strong projection from BLA to EC, particularly to LEA (Finch et al., 

1986; Room and Groenewegen, 1986). Our results reveal a more complex composition of 

amygdala inputs to the EC. The strongest projection to both LEA and MEA originates in 

OA, followed by LA, BMA and finally BLA. This pattern of connections is similar to that in 

monkeys in that the EC is targeted by the lateral and basal amygdala as well as olfactory 

amygdala structures (Insausti et al., 1987; Pitkanen et al., 2002). Interestingly, inhibition of 

the BLA input to EC during acquisition of contextual fear conditioning, reduced the freezing 

response in mice (Sparta et al., 2014). Like PER neurons, EC neurons signal associative 

relationships between cues and reward schedules; however, different information was 

encoded by the two regions, arguing against a feedforward signal from the PER (Sugase-

Miyamoto and Richmond, 2007). Thus, the LEA and PER may represent complementary 

aspects of the motivational significance of individual cues.

Because the POR is involved in contextual learning and attentional orienting, its connections 

with the amygdala are also of interest. Prior studies reported that the main amygdala input to 

the POR arises in the LA, but that this input is relatively weak (Pikkarainen and Pitkänen, 

2001; Pitkänen et al., 2000). We also show that the most input arises from the LA, followed 

by the BLA. Interestingly, the return projections target the LA and the CEA with similar 

strength (Agster et al., submitted). The POR projection to the CEA may support the POR 

role in attentional orienting and in monitoring the current context for changes (Bucci and 

Burwell, 2004; Burwell and Hafeman, 2003).

Subcortical contributions to PER and POR functions

Available evidence suggests that the PER and POR form different categories of conjunctive 

or hierarchical representations that contribute to memory, but that are also available to 

regions outside of the medial temporal lobe for cognitive processes other than memory (Ho 

and Burwell, 2014; Kent et al., 2016; Ranganath and Ritchey, 2012). Conjunctive coding in 

the PER represents the complexity of individual stimuli, including relative familiarity and 

motivational significance (Bussey and Saksida, 2005). Conjunctive coding in the POR 

represents the spatial layout of items and patterns in the local environmental context (Furtak 

et al., 2012). Both cortical and subcortical connections are consistent with the view that the 

PER and POR are key components in circuits whose functions go beyond that of merely 

providing specific types of information to the medial temporal lobe.

Lesions of the PER impair perceptual discrimination, particularly for multi-feature and 

multimodal stimuli (Eacott et al., 2001; Goulet and Murray, 2001; Moran and Dalrymple-
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Alford, 2003; Saksida et al., 2007). The role for the PER in perception seems to be largely 

independent of the hippocampus and constitutes a central function of the region. Another 

function involves signaling familiarity and novelty. The PER has been shown repeatedly to 

be necessary for the recognition of familiar objects (Ennaceur and Aggleton, 1997; Winters 

and Bussey, 2005) and to have different neural signatures for familiar and novel objects 

(Wan et al., 1999; Zhu and Brown, 1995). Recently, our laboratory showed that PER 

stimulation at specific frequencies influences behavioral exploration of familiarity and 

novelty (Ho et al., 2015), suggesting the PER is part of a circuit that upregulates and 

downregulates exploratory behavior based on current surroundings and internal states.

The cortical and subcortical input to the PER is consistent with a role in processing detailed 

and multimodal information about objects and discrete items including behavioral relevance, 

like relative familiarity. The PER receives multimodal sensory inputs, roughly segregated 

along the anteroposterior axis (Burwell, 2001; Burwell and Amaral, 1998a). The subcortical 

input could support this capability to integrate information across modalities. A moderate 

projection to the entire rostrocaudal extent of area 35 originates in the midline thalamic 

structures, implicated in attention, and in the nucleus reuniens, implicated in crossmodal 

processing (Van der Werf et al., 2002). Area 36 receives a strong input from the 

suprageniculate thalamic nucleus in the DTHla. The suprageniculate nucleus is also 

implicated in multimodal information processing. These inputs to PER areas 35 and 36 may 

be important for encoding multimodal, multidimensional stimuli and for disambiguating 

overlapping features of complex objects.

The POR is interconnected with the retrosplenial cortex, the posterior cingulate, posterior 

parietal cortex, and visual association cortices (Burwell, 2001; Burwell and Amaral, 1998a). 

The POR is uniquely situated to process contextual representations, and its subcortical 

afferents are consistent with this putative function. Two-thirds of the subcortical input to the 

POR arises in the dorsal thalamus. More than half of that input, however, arises in the lateral 

posterior nucleus, the rodent homolog of the primate pulvinar nucleus (Kamishina et al., 

2009; Nakamura et al., 2015). The rodent lateral posterior nucleus and the primate pulvinar 

are implicated in visual attention (Posner and Petersen, 1990; Shipp, 2004). Interestingly, the 

monkey parahippocampal cortex also receives a strong input from the pulvinar (Baleydier 

and Mauguiere, 1985). The lateral posterior nucleus also targets other cortical regions 

implicated in visual processes, including the retrosplenial, anterior cingulate, and temporal 

association cortices (Nakamura et al., 2015). In addition to the lateral posterior nucleus 

input, POR receives substantial inputs from nucleus reuniens, several anterior nuclei, and the 

ILM. Of the five target regions, the POR is the only region that receives substantial input 

from the ILM, an interesting finding, since the ILM has been implicated in attention (Mair et 

al., 1998; Newman and Burk, 2005).

This pattern of anatomical connections supports functional evidence for a POR role in 

representing and monitoring spatial context. Based on anatomical and other functional 

studies (Burwell and Hafeman, 2003; Furtak et al., 2012), we have hypothesized that the 

POR combines visual and spatial information from the lateral posterior nucleus, visual 

cortical areas, and the retrosplenial cortex, with object information from PER to represent 

the spatial layout of items, features, and patterns that characterize a specific context. The 
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POR is positioned to monitor the current context for changes signaled by the posterior 

parietal cortex and lateral posterior nucleus, and to update the representation of the current 

context with identified changes. The POR then makes this contextual information available 

to a variety of other regions for multiple purposes including decision-making, modulation of 

behavior, and memory.

Conclusion

This study of the subcortical afferents of PER areas 35 and 36, POR, and the entorhinal LEA 

and MEA is complemented by the companion study of the subcortical efferents (Agster et 

al., submitted). These two studies complete a series that includes our prior reports of 

neocortical and hippocampal afferents and efferents, as well as interconnections among 

these regions (Agster and Burwell, 2009; Agster and Burwell, 2013; Burwell and Amaral, 

1998a; Burwell and Amaral, 1998b). We report that the origin of subcortical input differs 

among the five target regions providing further evidence for functional differentiation in the 

medial temporal lobe.

The subcortical inputs to the PER and the POR suggest these areas make different 

contributions to memory, attention, and other cognitive processes. The PER receives input 

from multiple sensory modalities from both cortical (Burwell and Amaral, 1998a) and 

subcortical areas (present study). The PER projects directly to CA1 and subiculum, but it 

also projects strongly to frontal and other neocortical association regions. Thus, it is in good 

position to provide information about objects and other discrete stimuli to the hippocampus 

for memory and to neocortical regions for other cognitive functions. Its sensory input also 

puts the PER in good position for crossmodal, perceptual, and attentional processing of such 

stimuli. PER connections with the amygdala likely supports the capability to associate cues 

with motivational significance. The output of these functions may contribute to decision-

making and other cognitive processes through the PER’s strong interconnections with 

frontal associational regions.

The POR is strongly interconnected with retrosplenial and posterior parietal regions, 

receives visual associational input, and is targeted by the lateral posterior nucleus of the 

thalamus implicated in visuospatial attention. Like the PER, the POR projects directly to the 

CA1 and subiculum (Witter et al., 2000). It is also strongly and reciprocally connected with 

the dorsal presubiculum, also called the postsubiculum (Agster and Burwell, 2013). The 

dorsal presubiculum is necessary for object location memory and for recognizing familiar 

environments (Bett et al., 2013). Overall, this pattern of connectivity positions the POR for 

contextual learning and memory and online representation of the current local context. Such 

representations are important for episodic memory, but representations of context are also 

used by other neocortical regions for multiple purposes, for example formation of contextual 

frames and context-guided behavior.

We conclude that the subcortical inputs to the PER, POR, and EC further differentiate their 

contributions to hippocampal functions. In addition, the subcortical afferents are consistent 

with the view that conjunctive coding in the PER represents complex stimuli, including 

relative familiarity and motivational significance, whereas conjunctive coding in the POR 
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represents the spatial layout of items and patterns in the local environmental context. Such 

representations are important for episodic memory, but are also available to regions outside 

of the medial temporal lobe for non-mnemonic cognitive processes.
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Figure 1. 
PER, POR, and EC of the rat. A. Lateral surface view of the rat brain illustrating the borders. 

B. EC bands according to projections to the dentate gyrus (DG) of the hippocampus. The 

solid line delineates the border between LEA and MEA, the dashed line in the EC represents 

the rhinal sulcus and the dashed line in the DG represents the crest of the DG. The lateral 

band, represented in dark grey projects to the most septal (dorsal) region of the DG, the 

intermediate band, in medium grey, projects to intermediate DG, and the medial band, in 

light grey, projects to the most temporal (ventral) region of the DG. C. Location of labeled 

cells injection sites. The locations of the 33 injection sites are shown on a representative 

unfolded map of the PER (areas 35 and 36), POR and EC (LEA and MEA). Long dashed 

line represents the rhinal sulcus, small dashed lines represent the dentate-gyrus projecting 

bands for LEA and MEA. Sites shown in dark gray were restricted to deep layers. Sites 

shown in light gray were restricted to superficial layers. Sites shown in middle gray involved 

both deep and superficial layers. Other abbreviations: C, caudal; D, dorsal; R, rostral; rs, 

rhinal sulcus; S, septal; T, temporal; V, ventral. Scale bar: 1 mm.
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Figure 2. 
Boundaries for subcortical nuclei for a subset of coronal sections. The boundaries and 

coronal views were adapted from Swanson (1998). Some nuclei were combined as described 

in the Nomenclature section. Each structure is depicted in a unique color. See list of 

abbreviations in Table 1. Scale bar: 1 mm.
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Figure 3. 
A–H. Computer generated plots of coronal sections showing the distribution of labeled cells 

arising from a labeled cells tracer injection in Area 35. Eight of 44 rostrocaudal levels are 

shown for experiment 112DY. Boundaries of subcortical structures are depicted by colored 

contours. See Figure 2 for color code. Note the high density of cells observed in CLA, EP, 

PTA and MG. MG labeling was denser in this case than all the other PER area 35 injection 

cases. I. Injection site on a Nissl stained section. The injection site is not represented in the 

diagram, because it was located between panels F and G.
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Figure 4. 
A–H. Computer generated plots of coronal sections showing the distribution of labeled cells 

arising from a labeled cells tracer injection in Area 36 (concentric circles marked in panel G) 

and. Eight of 43 coronal levels are shown for experiment 98DY. Boundaries of subcortical 

structures are depicted by colored contours. See Figure 2 for color code. Note high density 

of cells in LA, DTHla (specifically the suprageniculate nucleus) and MG. I. Injection site on 

a Nissl stained section.
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Figure 5. 
A–H. Computer generated plots of coronal sections showing the distribution of labeled cells 

arising from a connectional topography tracer injection in the POR (shown in panel H). 

Eight of 43 rostrocaudal levels are shown for experiment 98FB. Boundaries of subcortical 

structures are depicted by colored contours. See Figure 2 for color code. Note the overall 

lower number of labeled cells, but the high density of cells in CLA and DTHla (specifically, 

the lateral posterior nucleus). I. Injection site on a Nissl stained section.
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Figure 6. 
A–H. Computer generated plots of coronal sections showing the distribution of labeled cells 

arising from a retrograde tracer injection in the LEA (shown in panel H). Eight of 48 

rostrocaudal levels are shown for experiment 124FB. Boundaries of subcortical structures 

are depicted by colored contours. See Figure 2 for color code. Note the high density of cells 

in CLA, EP, LA, BMA, OA, and PTA. I. Injection site on a Nissl stained section.
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Figure 7. 
A–H. Computer generated plots of coronal sections showing the distribution of labeled cells 

arising from a retrograde tracer injection in the MEA (shown in panel H). Eight of 44 

rostrocaudal levels are shown for experiment 106DY. Boundaries of subcortical structures 

are depicted by colored contours. See Figure 2 for color code. Note the high density of 

labeled cells in CLA, DTHmi (specifically the nucleus reuniens), EP and OA. I. Injection 

site on a Nissl stained section.
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Figure 8. 
Percentages, total numbers of labeled cells and densities in composite subcortical areas 

resulting from retrograde injections in the PER areas 35 and 36, POR, LEA and MEA. Color 

code is for all panels. A. Input to each target region as indicated by the percentage of labeled 

cells found in each composite subcortical region. Note POR has a much larger proportion of 

labeled cells in the dorsal thalamic nuclei, largely the lateral posterior nucleus. Proportions 

for area 35 are more similar to the LEA and area 36 is more similar to the MEA. See Table 3 

for details. B. Input to each target region as indicated by normalized total numbers of labeled 
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cells for each group of subcortical structures. The LEA has the most input from subcortical 

regions, followed by area 35, then MEA, area 36 and finally the POR. C. Output from 

different subcortical structures indicated by average densities of labeled cells in the 

subcortical areas. See Table 4 for details and Table 1 for abbreviations.
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Figure 9. 
Percentages and densities and labeled cells in the lateral, intermediate, and medial DG-

projecting bands of the LEA and the MEA. A. Input to each LEA and MEA band as 

indicated by percentage of labeled cells found in each composite subcortical region. Color 

code in panel A also serves for panel B. The distribution of subcortical input is generally 

similar between the LEA and MEA bands. Amygdala input increases from the lateral to the 

medial bands of both LEA and MEA. Olfactory input increases from the lateral to the 

medial bands of MEA. Input from the claustrum decreases from lateral to medial bands for 

the MEA. B. Output to different bands indicated by densities of labeled cells. Average 

densities of labeled cells in the subcortical areas. Olfactory and amygdala structures target 

the medial band of both the LEA and the MEA more strongly than the lateral and 

intermediate bands.
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Figure 10. 
Wiring diagram based on the percentage measure representing the subcortical input to the 

PER areas 35 and 36, POR, LEA and MEA. Colors represent the afferent regions. Thickness 

of the bars represents the percentage of input to each target region. This measure is useful 

for comparing the pattern of inputs at the target regions. For example, PER area 35 receives 

a strong input from olfactory structures, whereas area 36 does not. Information for 

connections shown in grey are from prior studies (Agster and Burwell, 2013; Burwell and 

Amaral, 1998b). For simplicity, the weakest connections (<5%) are not shown but can be 

found in Table 3. All basal ganglia connections were below 5%. See Table 1 for a list of 

abbreviations.
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Figure 11. 
Wiring diagram based on the density measure representing subcortical output to PER areas 

35 and 36, POR, LEA, and MEA). Colors represent the different target regions. Thickness of 

the bars represents the density of labeling in the afferent regions. This measure is useful for 

comparing the pattern of output of particular subcortical afferent structures to different 

targets. For example, the claustrum provides output to all five structures, but the strengths of 

those projections differ. Information for connections shown in grey are from prior studies 

(Agster and Burwell, 2013; Burwell and Amaral, 1998b). For simplicity, the weakest 

connections (< 2000 labeled cells/mm3) are not shown but can be found in Table 4. All basal 

ganglia connections were below 2000 cells/mm3. See Table 1 for a list of abbreviations.
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Table 1

Nomenclature and Abbreviations

Regions Analyzed Abbreviation

Olfactory Regions

 Anterior Olfactory Nucleus AON

 Olfactory Tubercle OT

 Piriform Transition Area PTA

 Endopiriform EP

 Taenia Tecta TT

Claustrum CLA

Amygdala

 Lateral Nucleus LA

 Basolateral Nucleus BLA

 Basomedial Nucleus BMA

 Central Nucleus CEA

 Olfactory Amygdala OA

Septal Nuclei

 Lateral Septum LS

 Medial Septum MS

 Posterior Septum PS

 Bed Nucleus of the Stria Terminalis BST

Basal Ganglia

 Caudate Putamen CP

 Nucleus Accumbens ACB

 Globus Pallidus GP

 Substantia Innominata SI

 Substantia Nigra-Ventral Tegmental Area SN-VTA

Dorsal Thalamus

 Epithalamus EPI

 Dorsal Midline Group DTHmi

 Dorsal Anterior Group DTHan

 Dorsal Medial Group DTHme

 Dorsal Lateral Group DTHla

 Dorsal Ventral Group DTHve

 Intralaminar Nuclei ILM

Ventrolateral Thalamus

 Medial Geniculate MG

 Lateral Geniculate LG

 Reticular Nucleus RT

 Zona Incerta ZI

 Ventrolateral Group VLTH

Hypothalamus
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Regions Analyzed Abbreviation

 Periventricular Zone PVZ

 Medial Zone MEZ

 Mammillary Bodies MBO

 Lateral Zone LZ

Nomenclature is from Paxinos and Watson (1998) and Swanson (1998). DTHmi included the paraventricular nucleus, the parataenial nucleus, and 
the nucleus reuniens; DTHan included anteroventral, anteromedial, anterodorsal, interanteromedial, interanterodorsal, and lateral dorsal nuclei; 
DTHme included mediodorsal and submedial thalamic nuclei, and the perireuniens nucleus; DTHla included the suprageniculate nucleus and the 
lateral posterior nucleus, the posterior limiting nucleus, and the posterior complex of the thalamus; DTHve included the ventral anterior-lateral 
complex, the ventral medial nucleus and the ventral posterior complex of the dorsal thalamus; VLTH included the subthalamic nucleus, the 
perifascicular nucleus, and the peripeduncular nucleus; PVZ included the paraventricular, anteroventral, anterior, intermediate, and posterior 
paraventricular hypothalamic nuclei; MBO included the dorsal, medial, and lateral mammillary nuclei, the tuberomammillary nucleus, and the 
supramammillary nucleus; MEZ included the medial, anterodorsal, anteroventral, and posterodorsal preoptic nuclei, the parastrial nucleus, the 
suprachismatic nucleus, the retrochiasmatic area, the subparaventriclar zone, the anterior hypothalamic area, and the tuberal area of the 
hypothalamus. The LZ included the lateral preoptic area and the lateral hypothalamic area. See text for details.
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Table 2

Labeled cells Tracer Injection Sites

Location of Injection Experiment Layer Size (mm3)

Perirhinal Cortex (PER)

 rostral area 35 102DY I–III 0.06

 rostroventral area 35 132FB1 I–II 0.02

 ventral area 35 112DY V 0.10

 caudal area 35 108FG I–VI 0.24

 rostral area 36 119FB I–V 0.08

 rostrodorsal area 36 120FB III–V 0.11

 rostroventral area 36 97DY III–V 0.06

 mid-rostrocaudal area 36 98DY I–V 0.11

 mid-rostrocaudal area 36 132DY V 0.02

 mid-rostrocaudal area 36 94FB V 0.02

 caudoventral area 36 99DY II–III 0.06

 caudoventral area 36 100DY V 0.01

 caudodorsal area 36 120DY V 0.02

Postrhinal Cortex (POR)

 rostroventral POR 102FB V 0.02

 rostral POR 97FB V 0.16

 middle POR 98FB I–VI 0.13

 middle POR 95DY III–VI 0.13

 caudodorsal POR 100FB I–V 0.17

 caudal POR 99FB I–V 0.13

Entorhinal Cortex (EC)

 rostrolateral LEA, LB 113FB I–V 0.19

 caudolateral LEA, LB 130FB V–VI 0.04

 caudal LEA, LB 105DY V 0.06

 rostral LEA, IB 124FB I–VI 0.32

 rostral LEA, IB 129DY III–V 0.05

 middle LEA, IB 128DY V 0.04

 caudomedial LEA, IB 105FB2 III–VI 0.02

 caudomedial LEA, MB 129FB V–VI 0.02

 dorsolateral MEA, LB 113DY V 0.05

 dorsolateral MEA, LB 118FB III–VI 0.13

 mediolateral MEA, LB 124DY I–III 0.18

 caudoventral MEA, IB 119DY I–II 0.07

 ventral MEA, IB 106DY II–VI 0.10

 rostroventral MEA, MB 128FB V 0.06

Table is adapted from Burwell and Amaral (1998a). The regional and laminar location of the injection sites are shown in the first and third columns. 
Labeled cells tracers were Diamidino Yellow (DY), Fast Blue (FB), and Fluoro-Gold (FG). Each experiment is designated as the subject identifier 
followed by the tracer.
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1
For experiment 132FB, moderate necrosis was observed in the external capsule.

2
Experiment 105FB slightly involved underlying white matter.
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