89 research outputs found

    Comparison of gene expression signatures of diamide, H(2)O(2 )and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    Get PDF
    BACKGROUND: In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O(2)(2-)), superoxide (O(2)(•-)) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. RESULTS: Genome-wide transcriptional changes triggered by diamide, H(2)O(2 )and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H(2)O(2 )were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O(2)(2-), O(2)(•- )concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H(2)O(2 )and menadione treatments and gene groups influenced by GSH/GSSG, O(2)(2- )and O(2)(•- )were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development and sporulation was ROS responsive. CONCLUSION: The existence of separate O(2)(2-), O(2)(•- )and GSH/GSSG responsive gene groups in a eukaryotic genome has been demonstrated. Oxidant-triggered, genome-wide transcriptional changes should be analyzed considering changes in oxidative stress-responsive physiological conditions and not correlating them directly to the chemistry and concentrations of the oxidative stress-inducing agent

    Coding and Noncoding Transcriptomes of NODULIN HOMEOBOX (NDX)-Deficient Arabidopsis Inflorescence

    Get PDF
    Arabidopsis NODULIN HOMEOBOX (NDX) is a plant-specific transcriptional regulator whose role in small RNA biogenesis and heterochromatin homeostasis has recently been described. Here we extend our previous transcriptomic analysis to the flowering stage of development. We performed mRNA-seq and small RNA-seq measurements on inflorescence samples of wild-type and ndx1-4 mutant (WiscDsLox344A04) Arabidopsis plants. We identified specific groups of differentially expressed genes and noncoding heterochromatic siRNA (hetsiRNA) loci/regions whose transcriptional activity was significantly changed in the absence of NDX. In addition, data obtained from inflorescence were compared with seedling transcriptomics data, which revealed development-specific changes in gene expression profiles. Overall, we provide a comprehensive data source on the coding and noncoding transcriptomes of NDX-deficient Arabidopsis flowers to serve as a basis for further research on NDX function

    Determining the prevalence of childhood hypertension and its concomitant metabolic abnormalities using data mining methods in the Northeastern region of Hungary

    Get PDF
    OBJECTIVE: Identifying hypertension in children and providing treatment for it have a marked impact on the patients’ long-term cardiovascular outcomes. The global prevalence of childhood hypertension is increasing, yet its investigation has been rather sporadic in Eastern Europe. Therefore, our goal was to determine the prevalence of childhood hypertension and its concomitant metabolic abnormalities using data mining methods. METHODS: We evaluated data from 3 to 18-year-old children who visited the University of Debrecen Clinical Center’s hospital throughout a 15-year study period (n = 92,198; boys/girls: 48/52%). RESULTS: We identified a total of 3,687 children with hypertension (2,107 boys and 1,580 girls), with a 4% calculated prevalence of hypertension in the whole study population and a higher prevalence in boys (4.7%) as compared to girls (3.2%). Among boys we found an increasing prevalence in consecutive age groups in the study population, but among girls the highest prevalences are identified in the 12-15-year age group. Markedly higher BMI values were found in hypertensive children as compared to non-hypertensives in all age groups. Moreover, significantly higher total cholesterol (4.27 ± 0.95 vs. 4.17 ± 0.88 mmol/L), LDL-C (2.62 ± 0.79 vs. 2.44 ± 0.74 mmol/L) and triglyceride (1.2 (0.85-1.69) vs. 0.94 (0.7-1.33) mmol/L), and lower HDL-C (1.2 ± 0.3 vs. 1.42 ± 0.39 mmol/L) levels were found in hypertensive children. Furthermore, significantly higher serum uric acid levels were found in children with hypertension (299.2 ± 86.1 vs. 259.9 ± 73.3 μmol/L), while glucose levels did not differ significantly. CONCLUSION: Our data suggest that the calculated prevalence of childhood hypertension in our region is comparable to data from other European countries and is associated with early metabolic disturbances. Data mining is an effective method for identifying childhood hypertension and its metabolic consequences
    corecore