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in Aspergillus nidulans. Fungal Genet. Biol. (2010
Under long-term oxidative stress caused by menadione sodium bisulfite, genome-wide transcriptional
and proteome-wide translational changes were compared in Aspergillus nidulans vegetative cells. The
comparison of proteomic and DNA microarray expression data demonstrated that global gene expression
changes recorded with either flip-flop or dendrimer cDNA labeling techniques supported proteome
changes moderately with 40% and 34% coincidence coefficients, respectively. Enzyme levels in the glyco-
lytic pathway were alternating, which was a direct consequence of fluctuating gene expression patterns.
Surprisingly, enzymes in the vitamin B2 and B6 biosynthetic pathways were repressed concomitantly
with the repression of some protein folding chaperones and nuclear transport elements. Under long-term
oxidative stress, the peroxide-detoxifying peroxiredoxins and cytochrome c peroxidase were replaced by
thioredoxin reductase, a nitroreductase and a flavohemoglobin, and protein degradation became predom-
inant to eliminate damaged proteins.

� 2010 Published by Elsevier Inc.
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1. Introduction O2-exposed cells to eliminate harmful ROS through a wide array of
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In aerobic organisms reactive oxygen species (ROS) are generated
continuously as side products of respiration (Li et al., 2009). ROS in-
clude hydrogen peroxide (H2O2), superoxide anion (O��2 ) and hydro-
xyl radicals (HO�). In addition to their important signaling functions
in diverse cellular processes (Lara-Otíz et al., 2003; Cano-Domin-
guez et al., 2008), ROS are also cytotoxic in prokaryotic and eukary-
otic organisms. Not surprisingly, significant efforts are made by the
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both enzymatic and non-enzymatic processes (Pócsi et al., 2004; Li
et al., 2009). Higher concentrations of ROS that may originate from
exogenous sources or due to intracellular enzyme activities may
cause aging and even initiate apoptotic cell death (Perrone et al.,
2008; Scheckhuber et al., 2009). ROS generated at low concentra-
tions can trigger an adaptive stress response that makes the cells
resistant to lethal concentrations of these toxic oxygen derivatives
(Collinson and Dawes, 1992; Jamieson, 1992; Li et al., 2008a).

Gene expression and proteome surveys have identified numer-
ous genes and gene products induced or repressed in response to
oxidants in yeasts and filamentous fungi (Godon et al., 1998; Gasch
et al., 2000; Chen et al., 2003, 2008; Kim et al., 2006, 2007a).
Applications of ROS generating agents, employed at sublethal doses
in Aspergillus nidulans (Pócsi et al., 2005) and Saccharomyces cerevi-
siae (Gasch et al., 2000; Thorpe et al., 2004), revealed significant
differences in gene expression depending on featured chemical,
the concentrations of the applied agents and the produced ROS.
tional and translational changes caused by long-term menadione exposure
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Pócsi et al. (2005) carried out genome-level gene expression data
analysis on the oxidative stress response of A. nidulans, and they
found that 2499 of the 3533 unique PCR-amplified gene probes
printed on an EST-based DNA microarray were affected by at least
one of the oxidative stress generating agents diamide, H2O2 and
menadione sodium bisulfite (MSB).

Under the experimental conditions used by Pócsi et al. (2005),
diamide, which is a thiol oxidizing compound, caused a quick
change in the glutathione/glutathione disulfide (GSH/GSSG) redox
status of the cells without influencing intracellular ROS concentra-
tions. On the other hand, the increased peroxide and superoxide
concentrations observable under H2O2 and MSB exposures could
not be separated from GSH/GSSG redox imbalances at any stressor
concentration tested. The disturbance of the GSH/GSSG redox bal-
ance under H2O2 and MSB-treatments was explained by the rela-
tively weak catalase production of A. nidulans, which burdened
the GSH-dependent enzymatic and non-enzymatic ROS elimina-
tion pathways (Pócsi et al., 2005).

The physiological effects of MSB are not limited to the cyclic gen-
eration of O��2 because these anions destroy 4Fe-4S proteins, which
leads to the formation of deleterious OH� radicals, and the detoxifica-
tion of MSB catalyzed by glutathione S-transferase also affects di-
rectly the GSH pool of the cells (Toledano et al., 2003; Pócsi et al.,
2004). In addition, menadione can chemically modify (arylate) cell
components and enhance membrane fluidity (Shertzer et al.,
1992). MSB is therefore likely to initiate mixed oxidative/non-oxida-
tive stress when employed at high (above 0.2 mmol l�1) concentra-
tions and for short periods of time in fungal cultures (Pócsi et al.,
2005). It is remarkable that a shift from a mixed-type stress response
towards a pure oxidative stress response was observed under long-
term (6–9 h) exposures of A. nidulans cultures to MSB, when the
intracellular accumulation of ROS and the decrease in the GSH/GSSG
ratio were equally significant, and numerous genes subjected to
superoxide, peroxide or GSH/GSSG-dependent transcriptional regu-
lation were responding to oxidative stress (Pócsi et al., 2005).

After completing the analysis of the data obtained from genome-
wide gene expression experiments, we addressed the question of
whether the large-scale and significant transcriptional changes
caused by MSB-treatments would also result in a proteome signifi-
cantly different from that of unstressed cultures. Kim et al. (2008)
reviewed proteomic data collected in the Aspergillii up to the year of
2008 and reported only a combined total of 28 cell surface, 102
secreted and 139 intracellular proteins that have been identified in
10 different studies. Taking into consideration the practical signifi-
cance of these industrially and medically important fungi and the fact
that most of them are fully sequenced and their genome annotations
have reached an advanced level (Wortman et al., 2009) these num-
bers are quite modest. Because no proteome study has been carried
out yet in oxidative stress-exposed Aspergillii, we would also have
liked to augment our proteome-level knowledge on the oxidative
stress defense system of these Euascomycetes (Miskei et al., 2009).

To compile data for all the requirements, in this study we
mapped the intracellular soluble proteome of A. nidulans vegeta-
tive cells exposed to high-dose (0.8 mmol l�1) MSB for long time
periods (6 h). Translational changes triggered by oxidative stress
were compared to genome-wide transcriptional changes recorded
using EST-DNA-microarrays and flip-flop and dendrimer cDNA
population labeling techniques under the same experimental con-
ditions (Pócsi et al., 2005).

2. Materials and methods

2.1. Strain, culture conditions

Aspergillus nidulans FGSC 26 (biA1, veA1) was used throughout
this study and was a gift of S. Rosén (University of Lund, Sweden).
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
Vegetative mycelium was cultivated in minimal nitrate medium
and was exposed to 0.8 mmol l�1 MSB for 6 h as described before
by Pócsi et al. (2005). MSB-treated mycelia were washed with
ice-cold phosphate-buffered saline (0.9% w/v NaCl in 0.1 mol l�1

phosphate buffer, pH 7.4) and distilled water, and were stored fro-
zen at �20 �C in lysis buffer (20 mmol l�1 Tris–HCl, pH 7.6,
10 mmol l�1 NaCl, 0.5 mmol l�1 deoxycholate) for proteomics stud-
ies. In DNA microarray experiments, mycelial sample preparation
and storage were performed as previously (Pócsi et al., 2005).

2.2. Proteomics studies

Intracellular soluble protein sample preparation was carried out
according to Nandakumar and Marten (2002) with some modifica-
tions. Frozen mycelia were disrupted with X-press (AB Biox,
Germany), and the endogenous proteases were inactivated by
40 ll ml�1 Protease Inhibitor Cocktail (Sigma–Aldrich). The cell deb-
ris suspension was centrifuged (6000 g, 4 �C, 10 min), and the super-
natant was treated stepwise by 7 ll ml�1 RNase/DNase/Mg mix
(0.25 mg ml�1 RNase, 0.5 mg ml�1 DNase, 50 mmol l�1 MgCl2;
0 �C; 5 min) and an equal volume of 20% TCA (0 �C; 30 min). Precip-
itated proteins were separated by centrifugation (6000 g, 4 �C,
20 min), and the pellets were washed twice with ice-cold acetone
and were air-dried at room temperature.

In two-dimensional polyacrylamide gel electrophoresis (2D-
PAGE), protein samples (protein contents were set to 300 lg, deter-
mined by the Non-Interfering Protein Assay Kit of Calbiochem) were
applied onto 17 cm immobilized pH gradient (IPG) strips (pH 5–8,
Bio-Rad) by passive rehydration for 12 h in a solution containing
7 mol l�1 urea, 2 mol l�1 thiourea, 2% (w/v) CHAPS, 50 mmol l�1

DTT and 0.5% ampholyte (Bio-Lyte 3/10 Ampholyte). Isoelectric
focusing (IEF) was performed in a Protean IEF Cell (Bio-Rad) applying
the following voltage settings: 0–250 V for 20 min, 250–10,000 V for
2.5 h and, in the final phase, 10,000 V for 8 h. Thereafter, the IPG
strips were consecutively incubated in solutions A and B for
20 min each time to reduce and alkylate the proteins. Solution A con-
tained 50 mmol l�1 Tris/HCl, pH 8.8, 6 mol l�1 urea, 30% (v/v) glyc-
erol, 5% (w/v) SDS and 2% (w/v) DTT, when in solution B DTT was
replaced by 6% (w/v) iodoacetamide. The second dimension of 2D-
PAGE was performed on 10–14% gradient SDS polyacrylamide gels
using the Protean II xi Multi-Cell (Bio-Rad). Gels were stained with
Ruthenium II Tris (Rabilloud et al., 2001; Lamanda et al., 2004) and
Coomassie Brilliant Blue.

Images of the 2D-PAGE gels were generated using a VersaDoc
4000 imaging system (Bio-Rad), and the analysis of the 2D-images
was performed with the PDQuest software (Bio-Rad). Protein sam-
ples coming from three independent experiments of each growth
condition were analyzed in separate 2D-PAGE runs, and the signif-
icances of the differences in the densitometric data gained in MSB-
treated and control samples for individual proteins were estimated
by the Student’s t-test.

Protein spots with significantly higher optical densities than
their counterparts in either the stress-exposed or the control cul-
tures were cut from 2D-PAGE gels, diced, and then were rinsed with
25 mmol l�1 NH4HCO3 {prepared in 50% (v/v) acetonitrile/water} to
remove SDS and Coomassie Brilliant Blue. The proteins in the spots
were digested with side-chain-protected porcine trypsin (Promega,
Madison, WI, USA; 25 mmol l�1 NH4HCO3, 37 �C, 4 h), and the mass
spectrometric analysis of the tryptic digests was performed by on-
line LC/MSMS using a 3D ion trap (LCQ Fleet, Thermo Fisher Scien-
tific GmbH, Bremen, Germany) connected with a nanoHPLC system
(MicroPro, Eldex, USA) and an autosampler (Endurance, Sunchrom,
Germany). Peptide fractionations were performed using a 3 lm
Atlantis™ dcC18 column (75 lm � 100 mm; Waters, Milford, MA,
USA), equilibrated in 10% (v/v) aqueous solution of acetonitrile,
which contained 0.1% formic acid. After sample injection, the
tional and translational changes caused by long-term menadione exposure
6
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concentration of acetonitrile was increased to 50% over 40 min (0.1%
formic acid, 300 nl min�1 flow rate). The mass spectrometer was
operated in triple play mode: survey scans were followed by a 6-
Da-zoom scan and CID analysis on the most abundant ion in the sur-
vey. Singly charged ions were excluded from the precursor selec-
tion; and dynamic exclusion was enabled. The MS/MS data were
processed with Mascot Distiller (version 2.1.1.0.) with peak picking
parameters recommended for ion trap data.

The generated peak-lists were submitted for database searches
with Mascot (in-house server v2.2.04.) against the National Center
for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov/)
non-redundant database (release 09-26-2007; 55,19,594 se-
quences). Search parameters were set to 0.6 Da mass accuracy for
the precursor ion and 1.0 Da for the fragment ions. Only tryptic
cleavages were considered and one missed cleavage was permitted.
Carbamidomethylation of Cys-residues was considered as fixed
modification, while methionine oxidation, protein N-acetylation
and pyroglutamic acid formation from N-terminal Gln residues were
regarded as variable modifications. The cut-off score, determined by
Mascot using a 0.05 significance threshold (p 6 0.05), was 54. To find
the exact ORF ID codes and the functions for the proteins, the se-
quences identified from the tryptic digests were analyzed with the
blastp search program of Altschul et al. (1997) in the Aspergillus Gen-
ome Database (www.broad.mit.edu/). Whenever ‘‘hypothetical pro-
teins” with no predicted function were identified, homology search
was also carried out via translated ORF query versus proteins in NCBI
BLAST. Homology data were filtered according to the 1E-40 expecta-
tion value (E) cutoff criteria.

Unless otherwise indicated, proteins with at least four identi-
fied peptides and with significant homologies equal to or above
the cut-off score 54, and/or with an at least 20% protein sequence
coverage (Raman et al., 2005) are presented in this work. In the
high and low molecular mass ranges, some proteins with at least
two identified peptides and lower sequence coverage were also ac-
cepted. On the basis of Aspergillus Genome Database (www.broad.-
mit.edu/), theoretical isoelectric point (pI) and molecular mass
(kDa) were calculated for each protein with the Compute pI/kDa
tool (Bjellqvist et al., 1993, 1994; Gasteiger et al., 2005; http://
ca.expasy.org/tools/pi_tool.html). Biochemical pathway informa-
tion was extracted from the Kyoto Encyclopedia of Genes and Gen-
omes (KEGG; version 51.0; release July 1, 2009; http://
www.genome.jp/; Kanehisa and Goto, 2000). The functional clus-
tering of the proteins was carried out using the AmiGO Gene Ontol-
ogy Database (http://amigo.geneontology.org/cgi-bin/amigo/
go.cgi; release August 27, 2009; Carbon et al., 2009). FUN genes
were analyzed for putative domains in the Conserved Domain
Database of the NCBI (Marchler-Bauer et al., 2005; http://
www.ncbi.nlm.nih.gov/sites/entrez?db=cdd).

2.3. Genomics studie

Double printed EST-based DNA chips (3533 unique PCR-ampli-
fied probes printed in 2 � 4073 spots; Pócsi et al., 2005) were used
to monitor changes in cDNA populations prepared from mRNA
pools isolated from MSB-exposed and untreated control cultures.
The full description of gene probes including PCR primers, Okla-
homa State University contig IDs (OSU contig IDs; PipeOnline
[http://bioinfo.okstate.edu/pipeonline/]) and Broad Institute (Cam-
bridge, MA, USA) ORF IDs (Broad Institute Aspergillus nidulans Data-
base, http://www.broad.mit.edu/annotation/fungi/aspergillus/) are
given at NCBI Gene Expression Omnibus (NCBI GEO; http://
www.ncbi.nlm.nih.gov/geo/) on Platforms GPL1752 and GPL1756.
Fluorescence labeling of the cDNA populations was carried out
following the ‘‘flip-flop” protocol of Hedge et al. (2000), where
Cy5-dUTP and Cy3-dUTP are incorporated into the cDNAs during
the reverse-transcription of the mRNA pools extracted from
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
stress-exposed and control cultures, respectively (‘‘flip”), or vice
versa (‘‘flop”). After hybridizing the cDNA pools onto the micro-
arrays (Hegde et al., 2000; Pócsi et al., 2005), gene expression levels
characterized by fluorescence intensities were read with a GenePix
4000B microarray scanner (Axon Instruments), and the intensity
ratios were calculated with GenePix Pro 3.0 software (Pócsi et al.,
2005).

Defected spots with false readings were filtered out manually,
and data points with background mean +1 SD higher than the spot
intensity means for both dyes were also disregarded (Pócsi et al.,
2005). Following that, the background-corrected ratios and log2 ra-
tios (M) of spot intensities were calculated, and the M values were
subjected to LOESS-type block-by-block normalization (Leung and
Cavalieri, 2003) using SAS for Windows, version 8 (SAS Institute
Inc., Cary, NC, USA) software. In further data processing, normal-
ized log2 ratios (M0) were analyzed. Only gene probes with M0 val-
ues above or below the [+1; �1] M0 thresholds value (‘twofold
rule’; Schena et al., 1996) were considered to respond to MSB-trig-
gered oxidative stress. All DNA microarray data were deposited in
NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/index.cgi) on Plat-
form GPL1752 in Folder GSE4713 (flip-flop database).

3. Results and discussion

3.1. mRNA and protein abundances in oxidative stress-exposed
A. nidulans

Comparing protein concentrations and mRNA expression levels
is at an advanced level in yeast research but lagging in filamentous
fungi including the Aspergillii (Kim et al., 2008). Yeast-based models
are of primary importance when the reasons for the poor correla-
tions between mRNA and protein levels typically found in eukary-
otic cells are studied and discussed (Gygi et al., 1999; de Nobel
et al., 2001; Greenbaum et al., 2003; Beyer et al., 2004; Brockmann
et al., 2007; Schmidt et al., 2007; Tuller et al., 2007; de Groot et al.,
2007). The correlation depends on both the cellular localization
and the physiological function of the proteins (Greenbaum et al.,
2003; Beyer et al., 2004; Schmidt et al., 2007; de Godoy et al.,
2008; Rossignol et al., 2009), and is influenced by many complex fac-
tors including translational activity (Brockmann et al., 2007), pro-
tein half-lives (Beyer et al., 2004; Belle et al., 2006) as well as
natural and manufactured systematic noise (Greenbaum et al.,
2003). It is important to note that data gained by ORF (EST) based
DNA microarrays may be distorted to some extent by cross-hybrid-
izations (Iwahashi et al., 2007), which may also influence the confor-
mity of the proteome and transcriptome data.

Similar to general and specific stress responses, which are well-
described at the level of transcription, post-transcriptional general
and specific stress responses also exist in yeast (Brockmann et al.,
2007). Many stress-responsive genes are subjected to the post-tran-
scriptional regulation mechanism ‘‘translation on demand” (Beyer
et al., 2004; Brockmann et al., 2007), which is crucially important
when adapting to an environmental stress that requires a quick cel-
lular response (Brockmann et al., 2007). As a consequence, changes
in the expression of mRNA populations do not necessarily correlate
with the levels of the translated proteins and vice versa (Beyer et al.,
2004; Kolkman et al., 2006; Tuller et al., 2007). In general, transcrip-
tion factors and signaling genes are regulated mainly post-transcrip-
tionally (Brockmann et al., 2007) while many elements of the
biosynthetic pathways are controlled transcriptionally (Bro et al.,
2003; Washburn et al., 2003; Rossignol et al., 2009).

Because the applicability of yeast-based models in the descrip-
tion of Aspergillus stress response systems was limited (Miskei
et al., 2009) our primary goal was to gain information on the
correlation between protein and mRNA abundances in oxidative
stress-exposed A. nidulans cells.
tional and translational changes caused by long-term menadione exposure
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Proteome analysis of MSB-exposed (6 h) A. nidulans cultures re-
vealed 82 stress-related intracellular proteins undergoing signifi-
cant changes (Fig. 1; Supplementary 1). Out of those, 17 proteins
were detected in more than one spot and five of them were iden-
tified in repressed and induced forms as well (Supplementary 1;
Table 1). A survey of the literature and the Aspergillus Stress Data-
base (http://193.6.155.82/AspergillusStress/; Miskei et al., 2009)
revealed that merely 19 of the proteins had been related to any
kind of stress response thus far (e.g. oxidative, heat, osmotic stress,
unfolded protein response; Supplementary 2). DNA microarray
databases gained with flip-flop (this study) and dendrimer (Pócsi
et al., 2005) cDNA labeling techniques provided us with transcrip-
tion data for the genes encoding 42 of the 82 identified stress-re-
sponse proteins (Supplementary 3). We found both flip-flop and
dendrimer microarray data for the great majority of these genes
(38 of the 42), and the DNA chips used in these studies contained
more than one different PCR-amplified probes for 17 stress-related
genes (Supplementary 3).

When the correlation between transcriptome and proteome
datasets was examined, coincidence between protein levels and
gene expressions was found with 6 h MSB-treated proteome (P)
and 6 h treated transcriptome samples. Coincidence levels with
flip-flop-labeled (F) and dendrimer-labeled (D6) transcriptome
datasets were 40% and 34% (Fig. 2, Panels P–F and P-D6, II + RR),
respectively. These coincidence coefficients were in good accor-
dance with previous observations correlating mRNAs with protein
abundance (Tian et al., 2004; Nie et al., 2006; Brockmann et al.,
2007). Poor coincidence coefficients (14–17%) were found compar-
ing 6 h MSB-treated proteome and 0.5–3 h dendrimer data (Fig. 2,
Panels P-D0.5, P-D1 and P-D3, II + RR). This may be a consequence
of the relatively slowly accumulating oxidative stress in MSB-ex-
posed A. nidulans cells (Pócsi et al., 2005). The conformity between
proteome and transcriptome data was 29% when proteome was
compared to pooled dendrimer data (Fig. 2, Panel P-D0.5–6,
II + RR), and the lowest percentage (3%) of opposite proteome
and transcriptome changes was recorded with 3 and 6 h transcript-
omes (Fig. 2, Panels P-D3 and P-D6, IR + RI). The percentage of pro-
teome changes not reflected in the variations of the transcriptome
was higher in the dendrimer-based DNA microarray hybridizations
(54–79%; Fig. 2, Panels P-D0.5, P-D1, P-D3 and P-D6, IO + RO) than
in the flip-flop-based DNA microarray hybridization (33%, Fig. 2,
Panel P–F, IO + RO).

An alternating protein expression pattern was observed for the
glycolytic pathway enzymes AcuG (repressed), FbaA (induced),
GpdA (repressed), PgkA (induced), EnoA (repressed), PkiA (in-
duced) after 6 h MSB-treatments (Fig. 3). As shown before by Pócsi
et al. (2005), the expressions of the glycolytic pathway genes acuG,
fbaA, gpdA and pkiA were fluctuating (periodically repressed and
induced) as a function of the MSB-exposure time (Supplementary
3, Fig. 4A). Theoretically, an alternating protein expression pattern
may arise in a metabolic pathway when transcriptional and trans-
lational changes are synchronous for the individual genes and gene
products but the frequencies of these fluctuations are markedly
different (Pócsi et al., 2005). A similar phenomenon has already
been observed under lithium treatments of budding yeast cells,
when every second gene, namely PGM2 (pgmB ortholog), FBP1
(acuG ortholog), TDH1 (gpdA ortholog) and GPM2, PYK2 (pkiA ortho-
log), was up-regulated in the glycolytic pathway (Bro et al., 2003).
Anaerobiosis also affected gene expressions and protein produc-
tions in quite different ways in the glycolytic pathway of S. cerevi-
siae because most of the gene expressions remained unchanged
but the quantities of a significant number of gene products in-
creased considerably (de Groot et al., 2007).

Opinions on the regulation of glycolytic proteins are dissenting.
These proteins may be under transcriptional regulation because
genes in the functional categories ‘‘metabolism,” ‘‘energy,” and
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
‘‘protein synthesis” exhibit the strongest correlation between
mRNA and protein levels in yeasts (Beyer et al., 2004), and a mod-
erate correlation between glycolytic pathway mRNA and protein
levels has been recorded by Schmidt et al. (2007). On the other
hand, post-transcriptional modulations may also play an important
role in the regulation of the glycolytic pathway enzymes (de Groot
et al., 2007), and the specific activities of the metabolic enzymes
may also influence the observed protein levels (Schmidt et al.,
2007). Based on our study, fluctuating mRNA and alternating pro-
tein expression levels suggest a remarkably flexible regulation for
the glycolytic pathway enzymes in stress-exposed A. nidulans.

It is worth noting that gene expression fluctuations are not lim-
ited to glycolytic pathway genes as demonstrated by DNA micro-
array experiments (Table 1; Supplementary 3; Pócsi et al., 2005),
Northern blot hybridizations (Pócsi et al., 2005) and real-time re-
verse-transcription polymerase chain reaction assays (Supplemen-
tary 4), and such fluctuating gene expression patterns may also
explain, at least in part, the observed asynchrony of the transcrip-
tome and proteome data (Fig. 2).

Nevertheless, for some genes and their protein products tran-
scriptional and translational changes were in good accordance
(Supplementary 3), and the gene expressions were either consis-
tently induced (e.g. genes encoding a putative glutathione S-trans-
ferase and a FUN protein ortholog to A. fumigatus AFUA_2G09530)
or repressed (e.g. hsp70 and ungA; Table 1; Fig. 4B). Stress-re-
sponse genes with minimal variations in their mRNA expression
levels after induction like Gst (Fig. 4B) were regulated mainly at
transcriptional level and the protein concentrations tended to be
less ‘‘noisy” in yeast (Brockmann et al., 2007). As a consequence,
mRNA levels correlated well with protein concentrations in these
cases (Greenbaum et al., 2003; Schmidt et al., 2007).

3.2. Stress-responsive proteins in MSB-treated A. nidulans

Analyzing the proteins described with the GO term ‘response to
stress’, the induced TrxR thioredoxin reductase, a flavohemopro-
tein (ANID_07169.1) and a nitroreductase (ANID_02343.1) re-
placed the repressed putative ortholog of budding yeast’s
mitochondrial Ccp1 cytochrome C peroxidase and the repressed
peroxiredoxins in the center of the oxidative stress defense system
of MSB-exposed A. nidulans (Table 1; Fig. 3; Supplementary 2). The
appearance of a flavohemoprotein among the induced proteins
may be indicative of developing nitrosative stress in MSB-treated
A. nidulans mycelia similar to budding yeast cells (Table 1; Liu
et al., 2000; Te Biesebeke et al., 2009). In S. cerevisiae, both MSB
and H2O2 treatments have been shown to generate nitrosative
stress (Almeida et al., 2007; Osorio et al., 2007).

GSH is the centerpiece of the antioxidative defense system in al-
most all eukaryotic cells, including fungi. GSH is present in high
concentrations in living cells, and is the major reservoir of reduced
non-protein sulfur (Pócsi et al., 2004). In MSB-exposed A. nidulans
mycelium, the GSH concentration drops and a number of GSH-bio-
synthetic and GSH-regenerating enzymes are induced to maintain
a physiologically relevant GSH/GSSG balance (Pócsi et al., 2005).
The induction of isoflavone reductase is an indicator of the limited
availability of GSH in maize (Petrucco et al., 1996) and, not surpris-
ingly, its ortholog (ANID_08815.1) was also induced in MSB-trea-
ted A. nidulans (Table 1), when the GSH/GSSG ratio is
significantly decreased (Pócsi et al., 2005). Induced glutathione-S-
transferases (Gst3 and a putative Gst) were also connected to the
oxidative stress response (Table 1) because these enzymes are re-
quired to protect eukaryotic cells from peroxide-induced cell death
(Pócsi et al., 2005) and the deleterious effects of menadione itself
(Emri et al., 1999).

Under long-term, chronic oxidative stress, glucose and ammo-
nia uptake are reduced in fungi (Emri et al., 1997; Osorio et al.,
tional and translational changes caused by long-term menadione exposure
6
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Fig. 1. 2D-PAGE separation and identification of intracellular soluble stress-responsive proteins in MSB-exposed A. nidulans vegetative cultures. Parts A and B represent
unstressed control and MSB-treated A. nidulans FGSC 26 cultures, respectively. Spots with significantly induced (Part B) or repressed (Part A) proteins are localized with
arrows and marked with spot ID (also listed in Supplementary 1). Only one of three independent runs is shown.
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2004; Li et al., 2008a) and, therefore, cells have to cope with glu-
cose and nitrogen shortages as well, in addition to the neutraliza-
tion of ROS and the maintenance of the GSH/GSSG and NADP+/
NADPH redox balances (Zadzinski et al., 1998; Pócsi et al., 2005;
Li et al., 2008b). The appropriate stress-responsive regulation of
the carbon and nitrogen metabolic pathways is of cardinal impor-
tance in the oxidative stress defense of stress-exposed cells.

In good agreement with this, various enzymes of carbon metab-
olism characterized with the main GO terms ‘‘hexose metabolism”
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
(incorporating glycolysis, gluconeogenesis, pentose phosphate
shunt), ‘‘TCA cycle”, ‘‘alcohol metabolism” as well as ‘‘carboxylic
acid metabolism”, ‘‘mannitol metabolism” and ‘‘amino acid metab-
olism” were found to be stress-responsive (Table 1). In the glyco-
lytic pathway, the main ATP-producer PkiA pyruvate kinase and
PgkA 3-phosphoglycerate kinase were induced together with FbaA
fructose 1,6-bisphosphate aldolase (Table 1, Fig. 3). It is important
to note that Pgk1p 3-phosphoglycerate kinase and Fba1p fructose
1,6-bisphosphate aldolase were also up-regulated in menadione-
tional and translational changes caused by long-term menadione exposure
6
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Table 1
Oxidative stress-responsive proteins in MSB-exposed Aspergillus nidulans.

Functionsa A. nidulans
locus IDb

Proteomicsc Genomicsc

Flip-
flop
6 h

Dendrimer
0.5 h

Dendrimer
1 h

Dendrimer
3 h

Dendrimer
6 h

Dendrimer
0.5–6 h

Response to stress
1-Cys peroxiredoxin, putative ANID_10223.1 R
Peroxiredoxin PrxA ANID_08692.1 R
cytochrome c peroxidase Ccp1 ANID_10220.1 R
Flavohemoprotein ANID_07169.1 I I R R A A
Nitroreductase ANID_02343.1 I
Thioredoxin reductase TrxR ANID_03581.1 I
Glutathione S-transferase GstB ANID_06024.1 I I I 0 0 I I
Glutathione S-transferase Gst3 ANID_10273.1 I 0

Hexose metabolism
UDP-glucose-4-epimerase GalGb ANID_04727.1 R
Phosphoglucomutase PgmB ANID_02867.1 R R 0 0
Fructose-1,6-bisphosphatase AcuG ANID_05604.1 R I I 0 I 0 I
Fructose 1,6-bisphosphate aldolase FbaA ANID_02875.1 I 0 0 0 0 0 0
Glyceraldehyde-3-phosphate dehydrogenase GpdA ANID_08041.1 R I 0 0 0 0 0
3-Phosphoglycerate kinase PgkA ANID_01246.1 I
Enolase EnoA (AcuN) ANID_05746.1 R
Pyruvate kinase PkiA ANID_05210.1 I I 0 R I I A
Glucose-6-phosphate 1-dehydrogenase GsdA ANID_02981.1 I I 0 I 0 I
Ribose 5-phosphate isomerase ANID_05907.1 I I 0 R 0 I A
Transketolase ANID_09180.1 R
Transaldolase PppA ANID_00240.1 I R 0 R 0 R R

Tricarboxylic acid cycle
Aconitase AcoA ANID_05525.1 R 0 0 0 0 0 0
Hypothetical protein similar to isocitrate dehydrogenase

subunit 2 IdpA
ANID_01003.1 I 0 0 0 0 0 0

Mitochondrial malate dehydrogenase MdhA ANID_06717.1 R
Malate dehydrogenase, MdhC ANID_06499.1 R 0 0 0 0 0 0
Alcohol metabolism
Aldehyde dehydrogenase AldA ANID_00554.1 R 0 I R 0 0 A
Zinc-containing alcohol dehydrogenase ANID_02351.1 I
Alcohol dehydrogenase ANID_08406.1 I
Carboxylic acid metabolism
Pyruvate decarboxylase PdcA ANID_04888.1 R A 0 R 0 R R
NAD-dependent formate dehydrogenase AciA ANID_06525.1 R 0 0 0 R R

Mannitol metabolism
Mannitol 2-dehydrogenase ANID_07590.1 I I R 0 0 0 R
Cellular amino acid metabolism
Argininosuccinate synthetase ANID_01883.1 R
Fumarylacetoacetate hydrolase FahA ANID_01896.1 R
Alanine transaminase ANID_01923.1 A

L-ornithine aminotransferase OtaA ANID_01810.1 I R

Ornithine carbamoyltransferase ArgB ANID_04409.1 R I 0 0 0 0
Dihydroxy-acid dehydratase ANID_06346.1 I
Cystathionine beta-synthase MecA ANID_05820.1 I
3-Phosphoserine aminotransferase ANID_10298.1 R
NADP-specific glutamate dehydrogenase GdhA ANID_04376.1 A
Glutamine synthetase GlnA ANID_04159.1 R I R 0 0 R
Choline oxidase (CodA), putative ANID_01429.1 I
Phosphatidyl synthase [Aspergillus fumigatus Af293] NCBI ANID_05564.1 I I 0 I I 0 I
Glucose–methanol–choline oxidoreductase ANID_08547.1 R

Cellular lipid metabolism
Myo-inositol-1-phosphate synthase ANID_07625.1 I I R 0 0 0 A
Acetyl-CoA acetyltransferase, putative ANID_01409.1 R

Riboflavin biosynthesis
6,7-Dimethyl-8-ribityl-lumazine synthase RiboG ANID_10718.1 R R R 0 0 R R
GTP cyclohydrolase II ANID_10981.1 R R

Cytoskeleton organization
Hypothetical protein similar to fimbrin FimA ANID_05803.1 I 0 0 0 0 0 0

Chitin biosynthesis
UDP-N-acetylglucosamine pyrophosphorylase UngA ANID_09094.1 R 0 R 0 0 R R

Nucleotide salvage
Adenine phosphoribosyltransferase 1 ANID_09083.1 R

Generation of precursor metabolites and energy
Ubiquinol–cytochrome c reductase iron–sulfur subunit ANID_02306.1 I
Inorganic pyrophosphatase IppA ANID_02968.1 R
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Table 1 (continued)

Functionsa A. nidulans
locus IDb

Proteomicsc Genomicsc

Flip-
flop
6 h

Dendrimer
0.5 h

Dendrimer
1 h

Dendrimer
3 h

Dendrimer
6 h

Dendrimer
0.5–6 h

Signal transduction
G-protein complex beta subunit CpcB ANID_04163.1 A 0 R I 0 0 A

Translation
Hypothetical protein similar to elongation factor EF-Tu ANID_01084.1 I
Elongation factor 2 ANID_06330.1 R
Translation elongation factor eEF-1B gamma subunit ElfA ANID_09304.1 I
Histidyl–tRNA synthetase ANID_00046.1 I I 0 0 R R
Aspartyl–tRNA synthetase Dps1 ANID_04550.1 R R 0 I R A
Protoplast secreted protein 2 [Aspergillus terreus NIH2624]NCBI ANID_00297.1 I
RNA binding protein [Aspergillus fumigatus Af293] NCBI ANID_05480.1 I I I 0 I I I

Protein folding, intracellular transport
Peptidyl–prolyl cis–trans isomerase D Cpr6 ANID_04583.1 R 0 0 0
Hsp70 ANID_05129.1 R R R 0 0 R R
GTP-binding nuclear protein ANID_05482.1 R I 0 0 0 0 0

Protein catabolism
Hypothetical protein similar to proteasome regulatory subunit 8 ANID_05121.1 I
Proteasome component Pre6 ANID_08054.1 I

Unknown biological process
Oxidoreductase ANID_00179.1 A
Oxidoreductase, hypothetical ANID_00895.1 A R 0 0 I R A
Zinc-binding oxidoreductase ANID_10098.1 I
NADH:flavin oxidoreductase/NADH oxidase ANID_05228.1 I
NADH-dependent flavin oxidoreductase ANID_06753.1 I
Zinc-binding oxidoreductase ToxD ANID_11094.1 I
NAD binding Rossmann fold oxidoreductase ANID_02208.1 I
Isoflavone reductase family protein [Aspergillus fumigatus

Af293] NCBI
ANID_08815.1 I I 0 0 0 I I

Beta-lactamase family protein ANID_05422.1 R R 0 0 0 0 0
Conserved hypothetical protein with homology to

methyltransferase [Ajellomyces dermatitidis ER-3] NCBI
ANID_02561.1 I

NAD dependent epimerase/dehydratase ANID_05989.1 R

FUN proteins
FUN; tetratricopeptide repeat domain-containing protein ANID_03987.1 I
FUN; UPF0160 domain-containing protein MYG1 ANID_04178.1 R
FUN; DUF833 domain-containing protein ANID_06058.1 I 0 0 I I I I
FUN; DUF636 domain-containing protein ANID_07594.1 I 0 0 0
FUN ANID_10219.1 I 0 0 0 0 0 0
FUN ANID_10260.1 I 0 R 0 0 R

a Putative or verified physiological functions of the stress-response proteins identified in the proteomics studies. Physiological functions were extracted from the Aspergillus
Comparative Database (http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html), the Central Aspergillus Data REpository CADRE (Mabey et al.,
2004; http://www.cadre-genomes.org.uk/), the Aspergillus Genome Database (http://www.aspergillusgenome.org/), the Gene Ontology Database (http://amigo.geneontolo-
gy.org/cgi-bin/amigo/go.cgi) and the Saccharomyces Genome Database (SGD, http://www.yeastgenome.org/).

b A. nidulans locus ID from the Aspergillus Comparative Database (http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html).
c Letters I, R, 0 and A stand for ‘‘significantly induced”, ‘‘significantly repressed”, ‘‘no significant induction or repression” and ‘‘ambivalent change”, respectively. For further

explanation of the A ‘‘ambivalent change” category in either the genomics or the proteomics studies, see the caption to Fig. 2. A summary of the changes in the gene
expression levels can be read in Supplementary 3.
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exposed S. cerevisiae cells (Kim et al., 2007a). As demonstrated by
Pócsi et al. (2005), the expression of some genes encoding glyco-
lytic enzymes was responsive to GSH/GSSG redox imbalance, e.g.
FbaA was repressed considerably, and this might result in the
intracellular accumulation of fructose-1,6-bisphosphate, a mito-
chondrion-protectant metabolite (Pócsi et al., 2005). The proteome
data challenged this hypothesis because FbaA was clearly induced
in MSB-exposed cultures (Table 1).

In the Aspergillus Stress Database (Miskei et al., 2009), GsdA
glucose-6-phosphate 1-dehydrogenase, AcuG fructose-1,6-bis-
phosphatase and GalGb UDP-glucose-4-epimerase from hexose
metabolic enzymes are indicated as stress-related proteins (Sup-
plementary 2). Moreover, some data published earlier on GpdA
glyceraldehyde-3-phosphate dehydrogenase, EnoA enolase and
their yeast orthologs underlined the importance of these enzymes
in versatile stress responses. For example, fungal glyceraldehyde-
3-phosphate dehydrogenases were reported to participate in
osmoadaptation (Kim et al., 2007b), in citric acid stress (Lawrence
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
et al., 2004), as well as in the response to concanamycin (Melin
et al., 2002) or amphotericin B (Yu et al., 2007) treatments, and
enolases are also well-known participants in various stress re-
sponses (Hu et al., 2003; Reverter-Branchat et al., 2004; Entelis
et al., 2006; Kwon et al., 2009; Pandey et al., 2009). GAPDH, the
budding yeast ortholog of GpdA, was a target of extensive proteol-
ysis under extended (200 min) H2O2 treatment, underwent S-nit-
rosylation and entered to the nucleus where it induced apoptosis
(Almeida et al., 2007).

A satisfactory NADPH production is of pivotal importance in the
maintenance of the GSH, glutaredoxin and thioredoxin-dependent
elements of the antioxidant defense system (Juhnke et al., 1996). In
compliance with the NADPH requirement of the stress-exposed
cells, the main NADPH-producer enzymes GsdA and isocitrate
dehydrogenase were induced.

As far as the nitrogen metabolism is considered, two key en-
zymes of ‘‘cellular amino acid metabolism” were also identified;
GdhA NADP-specific glutamate dehydrogenase was found in three
tional and translational changes caused by long-term menadione exposure
6
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The ‘‘ambivalent change” group included genes with ambiguous or even opposite transcriptional changes recorded on different PCR-amplified gene probes at the same MSB-
exposure time or with opposite transcriptional changes recorded on the same gene probe at different MSB-exposure times. In proteomic experiments, the ‘‘ambivalent
change” group included stress-related proteins with opposite changes in their quantities recorded in separate protein spots.
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spots, and the enzyme was induced in two of them under MSB-
stress meanwhile GlnA glutamine synthetase was repressed (Table
1; Fig. 3; Supplementary 2). The post-transcriptional regulation of
budding yeast’s GDH1 (ortholog of GdhA) was observed by several
authors (Dang et al., 1996; DeLuna et al., 2001; Griffin et al., 2002;
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
Riego et al., 2002; Kolkman et al., 2006), and the appearance of
multiple GdhA spots (both induced and repressed) on the 2D-PAGE
gels is in good agreement with these observations. Importantly, the
transcription of GdhA was repressed by glucose, induced by nitro-
gen limitation (Kolkman et al., 2006) and up-regulated under hyp-
tional and translational changes caused by long-term menadione exposure
6
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Fig. 3. Metabolic function and schematic cellular localization of MSB-stress-responsive A. nidulans proteins. Proteins with putative functions are summarized in Table 1 and
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oxic conditions (Shimizu et al., 2009). Changes in the S. cerevisiae
GLN1 glutamine synthetase (ortholog of GlnA) transcript and pro-
tein levels showed poor correlations in large-scale studies (Griffin
et al., 2002; Washburn et al., 2003), and opposite transcriptional
changes were also observed by us for GlnA in flip-flop (induction)
and dendrimer (repression) DNA microarray experiments while
the protein level was significantly decreased (Table 1).

The sulfur containing amino acid biosynthetic pathways were
represented solely by MecA cystathionine b-synthase among the
stress-induced proteins (Table 1; Supplementary 2). MecA cata-
lyzes the homocysteine/cystathionine conversion and, hence, plays
an important role in the biosynthesis of cysteine, one of the three
amino acids building up GSH (Pócsi et al., 2004). Cysteine can also
be synthesized in an alternative pathway, which includes cysteine
synthase (cysB, ANID_08057.1) and cysB was up-regulated under
the MSB-treatments (Pócsi et al., 2005). Therefore, both cysteine
biosynthetic pathways may operate in oxidative stress-exposed
A. nidulans hyphae. It is important to note that the cystathionine
pathway as well as GSH production were highly induced under
cadmium stress in yeast (Vido et al., 2001; Mendoza-Cózatl et al.,
2005; Baudouin-Cornu and Labarre, 2006) and in Blastocladiella
emersonii (Georg and Gomes, 2007). In the latter species, only the
cystathionine pathway operates.

Two enzymes in the urea cycle, ArgB ornithine carbamoyltrans-
ferase and arginosuccinate synthetase, were repressed in the
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
in Aspergillus nidulans. Fungal Genet. Biol. (2010), doi:10.1016/j.fgb.2010.08.00
ornithine–citrulline-L-arginosuccinate bioconversion pathway,
however, OtaA L-ornithine aminotransferase was induced, and this
may result in the accumulation of ornithine and a subsequent in-
crease in the glutamate biosynthesis. Because the TCA cycle was
repressed at malate dehydrogenase and AcoA aconitase (Table 1;
Fig. 3), the glutamate requirement of the GSH biosynthesis may
be met by the OtaA pathway.

Acetyl-CoA C-acetyltransferase (ANID_01409.1), which is classi-
fied under the GO term ‘‘fatty acid metabolism” but can be linked
to various metabolic pathways including the synthesis and degra-
dation of keton bodies, valine, leucine, isoleucine, the degradation
of lysine, the metabolisms of pyruvate and tryptophan, was re-
pressed. Myo-inositol-1-phosphate synthase in the biosynthesis
of inositol phospholipids (Reynolds, 2009) and CodA, a putative
choline oxidase in the biosynthesis of the osmoprotectant glycine
betaine (Park and Gander, 1998; Burg and Ferrais, 2008) were in-
duced together with a phosphatidyl synthase (ANID_05564.1).

Unexpected data were obtained on biosyntheses of vitamins be-
cause two enzymes, RiboG 6,7-dimethyl-8-ribityl-lumazine syn-
thase and GTP cyclohydrolase II, both in the riboflavin (vitamin
B2) biosynthetic pathway, were strongly repressed together with
3-phosphoserine aminotransferase, which is linked to the synthe-
ses of glycine, serine and threonine but also plays a role in the bio-
synthesis of pyridoxine (vitamin B6). Riboflavin protects cells from
oxidative injuries (Sugiyama, 1991; Perumal et al., 2005), and MSB-
tional and translational changes caused by long-term menadione exposure
6

http://dx.doi.org/10.1016/j.fgb.2010.08.006


572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630Q1

631

632

633

634

635

636

637

638

639

640

641

642

643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

A

B

Fig. 4. Typical gene expression patterns recorded under 0.5–6.0 h MSB-treatments
on EST-DNA-microarrays using dendrimer cDNA population labeling technique
(Pócsi et al., 2005). Gene expression data were imported from NCBI GEO Platform
GPL1752, Folder GSE2058. In Part A, the fluctuating transcriptional profiles of the
corresponding genes of several glycolytic pathway proteins are shown. The EST–
DNA-microarray contained several independent probes for the gene of PkiA
(Supplementary 3), and transcriptional changes recorded with two probes are
presented here. In Part B, some induced and repressed proteins with consistently
induced and repressed gene expressions are shown. Induced proteins are marked
with asterisks while repressed proteins are shown without any mark. In both Parts
A and B, M stands for the log2 ratios of the differentially labeled cDNA populations,
and the M values were normalized using the LOESS method (M0; Pócsi et al., 2005).

10 T. Pusztahelyi et al. / Fungal Genetics and Biology xxx (2010) xxx–xxx

YFGBI 2267 No. of Pages 12, Model 5G

30 August 2010
elicited oxidative stress positively affected the production of ribo-
flavin in Ashbya gossypii (Kavitha and Chandra, 2009). Although the
photosensitization-coupled cell toxicity of riboflavin is well-docu-
mented (Lloyd et al., 1990) further studies are needed to elucidate
the physiological significance of the repression of riboflavin bio-
synthesis in oxidative stress-exposed fungal cells. The possible
repression of the vitamin B6 biosynthetic pathway under MSB-
treatments is also interesting because Chumnantana et al. (2005)
reported on the GSH-pool-stabilizing and cell-vitality-preserving
effects of pyridoxine in S. pombe exposed to menadione.

MSB-treatment also affected important proteins responsible for
the regulation of ‘‘transcription, translation”, ‘‘proper protein fold-
ing and transport processes” and ‘‘protein catabolism” (Table 1, Sup-
plementary 2). Proper protein folding and nuclear transport seemed
to be reduced under oxidative stress since Hsp70 heat shock protein,
peptidyl–prolyl cis–trans isomerase D and GSP1/Ran GTP-binding
nuclear protein were repressed. On the contrary, two strongly
induced proteasome components, Prn8 and Pre6, were identified,
which is indicative of an increased degradation of damaged, loss-
of-function and improperly-folded proteins. In S. cerevisiae, five reg-
ulatory subunits of the proteasome were up-regulated under oxida-
tive stress (Haugen et al., 2004). Eight proteins with different
functions in translation also responded to MSB-treatments. Interest-
ingly, eEF-2 was found in more than one spot, but all of its isoforms
were repressed under oxidative stress while the eEF-Tu and eEF-1Bc
subunits of the elongation factor 1 showed induction.
Please cite this article in press as: Pusztahelyi, T., et al. Comparison of transcrip
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Among the elements of the signal transduction pathways, only
CpcB ‘cross-pathway control’ protein, which is a transcriptional
activator G-protein complex b-subunit, was identified in several
spots but the quantities of its isoforms changed oppositely (Table
1, Supplementary 2). The CpcB ortholog proteins in the yeasts S.
cerevisiae (Cpc2p/Asc1p) and S. pombe (Cpc2) are involved in the
regulation of differentiation processes (Hoffmann et al., 2000) like
sexual differentiation (Jeong et al., 2004) and cell-cell/cell-surface
interactions (Valerius et al., 2007). In A. nidulans, the induction of
the c-Jun homolog CpcA by amino acid limitation resulted in an
impaired sexual fruiting body formation, and the RACK1 homolog
CpcB repressed the ‘‘cross-pathway control” regulatory network
in the presence of sufficient amounts of amino acids (Hoffmann
et al., 2000). Concanamycin A treatment repressed the transcrip-
tion of cpcB (Melin et al., 2002), and so did the exposure to MSB
(Pócsi et al., 2005). MSB-stress-elicited induction of cpcA has also
been reported by Pócsi et al. (2005).

Several stress-response proteins could not be connected to any
known biological function (FUN proteins) but their common char-
acteristic was featuring oxidoreductase domains (Table 1). The
structural and functional information available for five other
stress-related proteins was even more scarce; three of them pos-
sessed conserved domains with unknown function labeled as
DUF636 (ANID_07594.1), DUF833 (ANID_06058.1) and UPF0160
(ANID_04178.1) in the Conserved Domain Database of NCBI, mean-
while no domain structure was recognized at all for further gene
products (ANID_10219.1 and ANID_10260.1; Table 1). The func-
tional analysis of FUN proteins is now in progress in our laboratory
including the generation and phenotypic characterization of gene
deletion mutants.
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