18 research outputs found

    Tailoring the surface properties and flexibility of starch-based films using oil and waxes recovered from potato chips byproducts

    Get PDF
    Agrofood byproducts may be exploited as a source of biomolecules suitable for developing bioplastic materials. In this work, the feasibility of using starch, oil, and waxes recovered from potato chips byproducts for films production was studied. The recovered potato starch-rich fraction (RPS) contained an amylopectin/amylose ratio of 2.3, gelatinization temperatures varying from 59 to 71β€―Β°C, and a gelatinization enthalpy of 12.5β€―J/g, similarly to a commercial potato starch (CPS). Despite of its spherical and oval granules identical to CPS, RPS had a more amorphous structure and gave rise to low viscous suspensions, contradicting the typical B-type polymorph crystal structure and sluggish dispersions of CPS, respectively. When used for films production, RPS originated transparent films with lower roughness and wettability than CPS-based films, but with higher stretchability. In turn, when combined with RPS and CPS, oil or waxes recovered from frying residues and potato peels, respectively, allowed to develop transparent yellowish RPS- and CPS-based films with increased surface hydrophobicity, mechanical traction resistance, elasticity, and/or plasticity. Therefore, potato chips industry byproducts revealed to have thermoplastic and hydrophobic biomolecules that can be used to efficiently develop biobased plastics with improved surface properties and flexibility, opening an opportunity for their valorization.publishe

    Triple GEM Tracking Detectors for the BM@N Experiment

    Get PDF
    BM@N (Baryonic Matter at the Nuclotron) is the fixed target experiment aimed to study nuclear matter in the relativistic heavy ion collisions at the Nuclotron accelerator in JINR. The BM@N tracking system is based on Gas Electron Multipliers (GEM) detectors, mounted inside the BM@N analyzing magnet. The structure of the GEM detectors and the results of study of their characteristics are presented. The GEM detectors are integrated into the BM@N experimental setup and data acquisition system. The results of the first test of the GEM tracking system in the technical run with the deuteron beam are shortly reviewed

    Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ кислородно-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΠ»Π°Π²ΠΊΠΎΠΉ Π² Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅

    Get PDF
    Π ΠΎΠ±ΠΎΡ‚Π° виконувалася Π· ΠΌΠ΅Ρ‚ΠΎΡŽ підвищСння СфСктивності киснСво-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΡ— ΠΏΠ»Π°Π²ΠΊΠΈ завдяки ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Ρ– систСми Π·Π°ΠΌΠΊΠ½Π΅Π½ΠΎΠ³ΠΎ кСрування. БтворСння ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ киснСво-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΡ— ΠΏΠ»Π°Π²ΠΊΠΈ Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Π»ΠΎΡΡ Π½Π° основі ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ модСлювання, який Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” Π΄Π΅Ρ‚Π΅Ρ€ΠΌΡ–Π½ΠΎΠ²Π°Π½ΠΈΠΉ, ймовірнісний Ρ‚Π° Свристичний ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— класифікації Ρ– ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ досвіду ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ кСрування. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° Π·Π°ΠΌΠΊΠ½Π΅Π½Π° систСма Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” Π² сСбС статичну, Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρƒ Ρ– Π·Π°ΠΌΠΊΠ½Π΅Π½Ρƒ ΠΌΠΎΠ΄Π΅Π»Ρ– кСрування киснСво-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΈΠΌ процСсом Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° сталі. Π‘Ρ‚Π°Ρ‚ΠΈΡ‡Π½Π° модСль Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΏΠ»Π°Π²ΠΊΠΈ Π΄ΠΎ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΡƒ процСсу, Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Π° - Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Π·Π½Π΅Π²ΡƒΠ³Π»Π΅Ρ†ΡŽΠ²Π°Π½Π½Ρ, Π·ΠΌΡ–Π½ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Ρ‚Π° ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– вигорання Π΄ΠΎΠΌΡ–ΡˆΠΎΠΊ ΠΏΡ–Π΄ час ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° Π·Π°ΠΌΠΊΠ½Π΅Π½Π° систСма кСрування ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»Π° Π°Π΄Π°ΠΏΡ‚Π°Ρ†Ρ–ΡŽ Π² ΡƒΠΌΠΎΠ²Π°Ρ… 160-Ρ‚ΠΎΠ½Π½ΠΈΡ… ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Ρ–Π² ПАВ β€œΠΡ€ΡΠ΅Π»ΠΎΡ€ΠœΡ–Ρ‚Ρ‚Π°Π», ΠšΡ€ΠΈΠ²ΠΈΠΉ Ріг”. Π•ΠΊΠΎΠ½ΠΎΠΌΡ–Ρ‡Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ Π²Ρ–Π΄ впровадТСння систСми кСрування ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΡŽ плавкою Π΄ΠΎΡΡΠ³Π°Ρ”Ρ‚ΡŒΡΡ Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ випуску ΠΏΠ»Π°Π²ΠΎΠΊ ΠΏΠΎ Π·Π°Π΄Π°Π½ΠΈΡ… ΠΌΠ°Ρ€ΠΊΠ°Ρ… сталі, підвищСння Π²ΠΈΡ…ΠΎΠ΄Ρƒ ΠΏΡ€ΠΈΠ΄Π°Ρ‚Π½ΠΎΠ³ΠΎ, покращСння якості ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†Ρ–Ρ—, Π΅ΠΊΠΎΠ½ΠΎΠΌΡ–Ρ— часу Ρ‚Π° ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π². Π—Π°ΠΌΠΊΠ½Π΅Π½Π° систСма кСрування Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ для ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ кСрування процСсом.The work was done in order to increase the efficiency of BOF smelting by constructing closed-loop control system. The creation of BOF melt models was based on the combined modeling method, which includes deterministic, probabilistic and heuristic approaches, methods of automatic classification and the positive experience of the previous administration. A closed-loop system including a static, dynamic and closed control model BOF steelmaking process was developed. Static model provides payment options to begin the process of melting, dynamic - decarbonization rate calculation, changes in temperature and burn-up rate during purging impurities. Developed a closed-loop control adaptation held under 160-tonnage converters PJSC β€œArcelorMittal Kriviy Rih”. Economic effect of implementing a control system converter process is achieved through the issuance of heats on the specified steel grades, higher weight yield, improve product quality, saving time and materials. Closed-loop control provides settings for optimal process control.Π Π°Π±ΠΎΡ‚Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ с Ρ†Π΅Π»ΡŒΡŽ увСличСния эффСктивности кислородно-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΠ»Π°Π²ΠΊΠΈ ΠΏΡƒΡ‚Π΅ΠΌ построСния систСмы Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠ³ΠΎ управлСния. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ кислородно-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΠ»Π°Π²ΠΊΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ Π½Π° основС ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° модСлирования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ, вСроятностный ΠΈ эвристичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ автоматичСской классификации ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π° ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ управлСния. Разработаная замкнутая систСма Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя ΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ, Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΡƒΡŽ ΠΌΠΎΠ΄Π΅Π»ΠΈ управлСния кислородно-ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½Ρ‹ΠΌ процСссом производства стали. БтатичСская модСль обСспСчиваСт расчСт ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π°Π²ΠΊΠΈ Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° процСсса, динамичСская - расчСт скорости обСзуглСроТивания, измСнСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ скорости выгорания примСсСй Π²ΠΎ врСмя ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ. Разработаная замкнутая систСма управлСния ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»Π° Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΡŽ Π² условиях 160-Ρ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€ΠΎΠ² ПАО β€œΠΡ€ΡΠ΅Π»ΠΎΡ€ΠœΠΈΡ‚Ρ‚Π°Π», ΠšΡ€ΠΈΠ²ΠΎΠΉ Рог”. ЭкономичСский эффСкт ΠΎΡ‚ внСдрСния систСмы управлСния ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΠ»Π°Π²ΠΊΠΎΠΉ достигаСтся Π·Π° счСт выпуска ΠΏΠ»Π°Π²ΠΎΠΊ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ ΠΌΠ°Ρ€ΠΊΠ°ΠΌ стали, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Π²Ρ‹Ρ…ΠΎΠ΄Π° Π³ΠΎΠ΄Π½ΠΎΠ³ΠΎ, ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, экономии Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Замкнутая систСма управлСния обСспСчиваСт ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ для ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ управлСния процСссом

    The HEV Ventilator

    Full text link
    HEV is a low-cost, versatile, high-quality ventilator, which has been designed in response to the COVID-19 pandemic. The ventilator is intended to be used both in and out of hospital intensive care units, and for both invasive and non-invasive ventilation. The hardware can be complemented with an external turbine for use in regions where compressed air supplies are not reliably available. The standard modes provided include PC-A/C(Pressure Assist Control),PC-A/C-PRVC(Pressure Regulated Volume Control), PC-PSV (Pressure Support Ventilation) and CPAP (Continuous Positive airway pressure). HEV is designed to support remote training and post market surveillance via a web interface and data logging to complement the standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the quality of the pressure curves and the reactivity of the trigger, delivering a global performance which will be applicable to ventilator needs beyond theCOVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with their performance evaluation.Comment: 34 pages, 18 figures, Extended version of the article submitted to PNA

    Immunohistochemical diagnostic of hibernoma in dog

    No full text
    The diagnosis of hibernoma is uncommon in veterinary medicine. In this report, we present an attempt to confirm hibernoma diagnosed in dogs by applying immunohistochemical tests routinely used in human pathology i.e. antibodies specific to protein S100, protein CD31, or smooth muscle actin (SMA)

    GEM tracking system of the BM@N experiment

    No full text
    BM@N (Baryonic Matter at the Nuclotron) is the fixed target experiment aimed to study nuclear matter in the relativistic heavy ion collisions at the Nuclotron accelerator in JINR. Detectors based on Gas Electron multipliers (GEM) have been identified as appropriate for the BM@N tracking system, which is located inside the BM@N analyzing magnet. The structure of the GEM detectors and the results of study of their characteristics are presented. The GEM detectors are integrated into the BM@N experimental setup and data acquisition system. The performance of the GEM tracking system in the first technical run with the deuteron beam is shortly reviewed

    Performance of the BM@N GEM/CSC tracking system at the Nuclotron beam

    Get PDF
    BM@N (Baryonic Matter at the Nuclotron) is a fixed target experiment aimed to study nuclear matter in the relativistic heavy-ion collisions at the Nuclotron accelerator in JINR. The BM@N tracking system is based on Gas Electron Multipliers (GEM) detectors mounted inside the BM@N analyzing magnet. The Cathode Strip Chamber (CSC) is installed outside the magnet. The CSC is used for improvement of particles momentum identification. The structure of the GEM detectors and the CSC prototype and the results of study of their characteristics are presented. The GEM detectors and CSC are integrated into the BM@N experimental setup and data acquisition system. The results of first tests of the GEM tracking system and CSC in last runs are shortly reviewed

    Performance of the BM@N GEM/CSC tracking system at the Nuclotron beam

    No full text
    BM@N (Baryonic Matter at the Nuclotron) is a fixed target experiment aimed to study nuclear matter in the relativistic heavy-ion collisions at the Nuclotron accelerator in JINR. The BM@N tracking system is based on Gas Electron Multipliers (GEM) detectors mounted inside the BM@N analyzing magnet. The Cathode Strip Chamber (CSC) is installed outside the magnet. The CSC is used for improvement of particles momentum identification. The structure of the GEM detectors and the CSC prototype and the results of study of their characteristics are presented. The GEM detectors and CSC are integrated into the BM@N experimental setup and data acquisition system. The results of first tests of the GEM tracking system and CSC in last runs are shortly reviewed
    corecore