97 research outputs found

    L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications

    Get PDF
    An essential component of the human diet, L-tryptophan is critical in a number of metabolic functions and has been widely used in numerous research and clinical trials. This review provides a brief overview of the role of L-tryptophan in protein synthesis and a number of other metabolic functions. With emphasis on L-tryptophan’s role in synthesis of brain serotonin, details are provided on the research uses of L-tryptophan, particularly L-tryptophan depletion, and on clinical trials that have been conducted using L-tryptophan supplementation. The ability to change the rates of serotonin synthesis in the brain by manipulating concentrations of serum tryptophan is the foundation of much research. As the sole precursor of serotonin, experimental research has shown that L-tryptophan’s role in brain serotonin synthesis is an important factor involved in mood, behavior, and cognition. Furthermore, clinical trials have provided some initial evidence of L-tryptophan’s efficacy for treatment of psychiatric disorders, particularly when used in combination with other therapeutic agents

    A Test of the Psychometric Characteristics of the BIS-Brief Among Three Groups of Youth

    Get PDF
    The current study empirically investigates the relationships between the Dark Triad personality traits and cyber-aggression among adolescents (14–18 year old). The sample consisted of 324 participants aged 14–18 (M = 16.05, SD = 1.31). Participants completed the Short Dark Triad (SD3) as a measure of the Dark Triad personality traits, the Facebook Intensity Scale and a scale to measure cyber-aggression. Structural equation modelling was applied to investigate the relationships. Results show that only Facebook intensity and psychopathy significantly predict cyber-aggression, when controlling for age and gender. Findings are discussed regarding the potential importance to further study Dark Triad traits, and psychopathy in particular, in the context of adolescent cyber-aggression

    Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms

    Get PDF
    Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40¾M) for 24 hours. ELISAs and western blotting were used to detect pro inflammatory cytokines, nitric oxide, PGE2, iNOS, COX-2 and mPGES-1. BACE-1 activity and Aβ levels were measured with ELISA kits. Protein levels of targets in NF-kappaB and p38 MAPK signalling, as well as HO-1, NQO1 and Nrf2 were also measured with western blot. NF-kappaB binding to the DNA was investigated using EMSA. MTT, DNA fragmentation and ROS assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, TNFι, and IL-6), Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-kappaB and p38MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated Nrf2 activity by increasing nuclear translocation of Nrf2 and its binding to antioxidant response elements in BV2 cells. Transfection of BV2 microglia with Nrf2 siRNA resulted in the loss of both anti-inflammatory and neuroprotective activities of artemether. We conclude that artemether induces Nrf2 expression and suggest that Nrf2 mediates the anti-inflammatory effect of artemether in BV2 microglia. Our results suggest that this drug has a therapeutic potential in neurodegenerative disorders

    Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors

    Get PDF
    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human ι1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies

    Induction of Heme Oxygenase-1 Can Halt and Even Reverse Renal Tubule-Interstitial Fibrosis

    Get PDF
    Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.Fundacao de Amparo Pesquisa do Estado de Sao Paulo-FAPESP[07/07139-3]Coordenaco de Aperfeioamento de Pessoal de Nivel Superior-CAPESInstituto Nacional de Ciencia e Tecnologia de Complexos Fluidos (INCT)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNP

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)

    Nitric Oxide Synthase Activity in Genetic Hypertension

    Full text link
    A porphyrinic sensor was used to monitor nitric oxide released from cultured endothelial and vascular smooth muscle cells obtained from genetically hypertensive rats and from a normotensive reference strain of rats. Endothelial cell nitric oxide synthase (the constitutive enzyme) was stimulated with bradykinin, and vascular smooth muscle cell nitric oxide synthase (the inducible enzyme) was induced with interleukin-1[beta]. Both types of cells from hypertensive rats released less nitric oxide than did cells from normotensive rats. The observed deficient nitric oxide release from endothelial and smooth muscle cells may contribute to the elevated vascular tone and increased cell growth described in hypertension.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30674/1/0000318.pd
    • …
    corecore